当前位置:首页 » 历物理化 » 负数的历史

负数的历史

发布时间: 2023-10-30 22:49:14

⑴ 负数的来历是什么

中国是世界上最早认识和应用负数的国家,早在公元前4世纪的《九章算术》,中国数学家就已经了解负数和零的概念了。公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”

大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”以上文字里的“无入”通常被数学历史家认为是零的概念。

尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。

西方最早在数学上使用负数的是一本印度数学文献,Brahmagupta写于628年的BrahmaSphuta-Sidd'hanta。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。

(1)负数的历史扩展阅读

实数

在数学中,实数是有理数和无理数的总称,前者如 {displaystyle 0} {displaystyle 0}、 {displaystyle -4} {displaystyle -4}、 {displaystyle {frac {81}{7}}} {displaystyle {frac {81}{7}}};后者如 {displaystyle {sqrt {2}}} {sqrt {2}}、 {displaystyle pi } pi 等。

实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举的方式不能描述实数的全体。实数和虚数共同构成复数。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。

以边长为 {displaystyle 1} 1公分的正方形为例,其对角线有多长?在规定的精度下(比如误差小于 {displaystyle 0.001} {displaystyle 0.001}公分),总可以用有理数来表示足够精确的测量结果(比如 {displaystyle 1.414} {displaystyle 1.414}公分)。

但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。

⑵ 负数是怎样产生的我国负数最早出现在什么时代

1、产生

负数也是在生产实践中产生的。人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。

我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”

这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”

2、我国负数最早出现时期

史料记载,我国在战国时期就认识到了负数。如李悝(约前455-395)在《法经》中写道,“衣五人终岁用千五百不足四百五十”。

而在甘肃居延出土的汉简中,有“相除以负百二十四算” 、“负二千二百四十五算” 、“ 负四算, 得七算,相除得三算”等类似叙述,这里把“负”与“得”相比,意为缺少、亏空,就是今天负数的雏形。

我国是最早使用负数的国家,西汉(公元前二世纪)时期,我国就开始使用负数。《九章算术》中已经给出正负数运算法则,人们在计算时就用两种颜色的算筹分别表示正数和负数,而用空位表示“0”,只是没有专门给出0的符号,“0”这个符号,最早在公元五世纪由印度人使用。

(2)负数的历史扩展阅读

负数虽然通过阿拉伯人的著作传到了欧洲,但16世纪和17世纪的大多数数学家并不承认它们是数,或者即使承认了也并不认为它们是方程的根。

负数是人类第一次越过正数域的范围,前此种种的经验,在负数面前全然无用。在数系发展的历史进程中,现实经验有时不仅无用,反而会成为一种阻碍。我们将会看到,负数并不是惟一的例子。

印度最早使用负数者是婆罗摩笈多(Brahmagupta,598-665), 其在628年完成的《婆罗摩修正体系》第18章中给出了正负数的四则运算法则,他认为负数就是负债和损失,并用小点或小圈标在数字上面表示负数。

和当时印度数学家一样,婆罗摩笈多将文字编排成椭圆形句子,而且最后会有一个环状排列的诗,让人读起来感觉很美妙。

古巴比伦人在解方程中未提出负根概念,即不用或未发现负数根。西方首先使用负数者应是古希腊的丢番图 (Diophantus,约246-330) , 尽管他不承认方程的负根,但已认识到“减数乘减数得加数, 加数乘减数得减数”。 若在解方程中出现负根,他就放弃此根。

⑶ 负数的由来

1、1700多年前,我国数学家刘徽首次明确地提出了正数和负数的概念。他还规定筹算时“正算赤,负算黑”,就是用红色酸臭表示正数,黑色算筹表示负数。这个记载比国外早七八百年。

2、同时还规定了有理数的加、减法则,认为“正、负术曰:同名相益,异名相除。”这“同名”、“异名”即现在的“同号”、“异号”、“除”和“益”则是“减”和“加”,这些思想,西方要迟于中国八九百年才出现。

3、印度在公元7世纪才采用负数,公元628年,印度的《婆罗摩修正体系》一书中,把负数解释为负债和损失。

4、1544年,德国的史提菲把负数定义为比任何数都小的数。1545年,意大利的卡当著《大法》,成为欧洲第一部论述负数的著作。

5、400多年前,法国数学家吉拉尔首次用“+”表示正数,“-”表示负数。这样的表示方法被广泛接受,并沿用至今。

6、特别是1637年,法国数学家笛卡尔发明了解析几何学,建立了坐标点,将平面点与负数、零、正数组成的实数对应起来,使负数得到了解释,从而加速了人们对负数的承认。但直到19世纪,德国数学家魏尔斯特拉斯等人为整数奠定了逻辑基础以后,负数才在现代数学中获得巩固的地位。

(3)负数的历史扩展阅读

一、负数的作用

1、负数是在人为规定正方向的前提下出现的。

2、负数常用来表示和正数意义相反的量。

3、在选择用正数还是负数表示时,首先看是否规定了正方向。

4、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。

例:零上5°用+5℃表示;零下5°用-5℃表示。收入2000元用+2000元表示;支出500元用-500元表示。

二、、负数的读法和写法

1、读法:在所读数的前面加上“负”

2、写法:在所写数的前面加上“-”

热点内容
初中物理光现象知识点 发布:2024-12-29 16:26:53 浏览:289
人教版英语三年级上册 发布:2024-12-29 16:18:41 浏览:995
山水学前教育 发布:2024-12-29 16:18:01 浏览:77
平遥教师节观后感 发布:2024-12-29 15:11:44 浏览:496
我与京子老师漫画 发布:2024-12-29 14:28:20 浏览:996
化学sci 发布:2024-12-29 14:19:47 浏览:833
给老师一封信200字 发布:2024-12-29 12:35:14 浏览:652
少儿英语官网 发布:2024-12-29 07:16:17 浏览:53
为什么史前生物都很大 发布:2024-12-29 07:10:39 浏览:664
泸州继续教育网 发布:2024-12-29 06:42:43 浏览:233