高一物理必修2曲线运动
就是说小船朝向对岸方向的速度大小不变,所以时间不变。比如从某一高度水平跑出一个物体,水平速度不同,但是时间还是一样的,h=1/2gt^2
㈡ 高一物理必修二曲线运动中的渡河问题
两种情况:①船速大于水速;②船速小于水速
两种极值:①渡河回最小位移;答②渡河最短时间
1、渡河最小位移
1)船速大于水速时
船速方向应斜向上游某一角度θ
最短位移才可能为河宽 d
此时cosθ=
V水/ V船,从而求出θ
2)船速小于水速时
以水速末端为圆心,以船速为半径画圆一样,对应的合速度方向如图所示,
此时船速与合速度垂直,
船速方向仍应斜向上游某一角度θ,cosθ=V船/ V水,可求出θ,
由几何关系可求最短位移Smin=d/
cosθ=d V水/ V船。
2、渡河最短时间
不管船速和水速的大小关系如何,
当船头垂直正对岸边运动时,
度和时间最短。
㈢ 高一物理必修二曲线运动那章算不算难
高一物理必修二曲线运动那章难度不是很大。
高一物理必修二曲线运动那章主要讲述平抛运动和匀速圆周运动两个部分相对而言平抛运动简单一点,只要分解成水平方向的匀速直线运动;竖直方向的自由落体运动就可以了。匀速圆周运动的难点的难点在确定提供圆周运动的向心力的分析上,突破了这个难点,问题就迎刃而解了。
㈣ 高中物理必修二 请问:曲线运动中,为什么速度大小可以不变
因为曲线运动中只是方向改变,速度不变。
㈤ 高一物理必修二的关于曲线运动
平抛运动
水平方向
V0T=0.01
竖直方向
(0.05/T)^2=Vy^2+2g*(0.05/2)
Vy=gt
抛出点距离a点的水平距离X=V0t=
抛出点距离a点的竖直距离Y=(1/2)gt^2=
㈥ 高一物理必修2的曲线运动好难啊!!我一点都不会啊~谁可以教教我
物体运动轨迹是曲线的运动,称为“曲线运动”。当物体所受的合力和它运动的方向不在同专一直属线上,物体的运动就是曲线运动。在曲线运动中:当力矢量与速度矢量间的夹角等于90°时,作用力仅改变物体速度的方向,不改变速度的量值;当夹角小于90°时,作用力不仅改变物体运动速度的方向,并且增大速度的量值;当夹角大于90°时,同样改变物体运动速度的方向,但是却减小速度的量值。曲线运动中速度的方向时刻在变,因为是个矢量,既有大小,又有方向。不论速度的大小是否改变,只要速度的方向发生改变,就表示速度矢量发生变化,也就具有了加速度,所以曲线运动是变速运动。常见的曲线运动有:平抛运动,斜抛物体运动,匀速圆周运动三种。
当然匀速圆周运动并不是真正的匀速运动,曲线运动是变速运动,而匀速圆周运动中所说的匀速指的是速度的大小.
当物体所受合力的方向与它的运动的方向不在同一直线上时,物体做曲线运动.
同时注意"切线",我们可以理解为质点在某一点的速度,沿曲线在这一点的切线方向.
㈦ 高中物理必修2第5章曲线运动公式中字母所代表的意思
具体那一个字母,你可以买一个教材,参考
㈧ 急求高中物理必修2曲线运动和天体运动的计算题(附带详解答案)
“万有引力定律”习题归类例析
万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析.
一、求天体的质量(或密度)
1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量
由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)
[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为 L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.
[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.
根据平抛运动的特点得抛出物体竖直方向上的位移为
设初始平抛小球的初速度为v,则水平位移为x=vt.有 ○1
当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有 ②
在星球表面上物体的重力近似等于万有引力,有mg=G ③
联立以上三个方程解得
而天体的体积为 ,由密度公式 得天体的密度为 。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量
卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得
若已知卫星的轨道半径r和卫星的运行周期T、角速度 或线速度v,可求得中心天体的质量为
[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)( )
A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r
B.月球绕地球运行的周期T和地球的半径r
C.月球绕地球运动的角速度和月球中心离地球中心的距离r
D.月球绕地球运动的周期T和轨道半径r
[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由 可以求出中心天体地球的质量,所以C项正确.由 求得地球质量为 ,所以D项正确.
二、人造地球卫星的运动参量与轨道半径的关系问题
根据人造卫星的动力学关系
可得
由此可得线速度v与轨道半径的平方根成反比;角速度 与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.
[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为 ,则轨道半径之比和运动速率之比分别为( )
A.
B.
C.
D.
[解析]由 可得卫星的运动周期与轨道半径的立方的平方根成正比,由 可得轨道半径 ,然后再由 得线速度 。所以正确答案为C项.
三、地球同步卫星问题
卫星在轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同,这种卫星轨道叫地球同步轨道,其卫星轨道严格处于地球赤道平面内,运行方向自西向东,运动周期为23小时56分(一般近似认为周期为24小时),由 得人造地球同步卫星的轨道半径 ,所以人造同步卫星离地面的高度为 ,利用 可得它运行的线速度为3.07 km/s.总之,不同的人造地球同步卫星的轨道、线速度、角速度、周期和加速度等均是相同的.不一定相同的是卫星的质量和卫星所受的万有引力.
人造地球同步卫星相对地面来说是静止的,总是位于赤道的正上空,其轨道叫地球静止轨道.通信卫星、广播卫星、气象卫星、预警卫星等采用这样的轨道极为有利一颗静止卫星可以覆盖地球大约40%的面积,若在此轨道上均匀分布3颗卫星,即可实现全球通信或预警.为了卫星之间不互相千扰,大约30左右才能放置1棵,这样地球的同步卫星只能有120颗.可见,空间位置也是一种资源。
[例4]关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )
A.已知它的质量是1.24 t,若将它的质量增为2.84 t,其同步轨道半径变为原来的2倍
B.它的运行速度为7.9 km/s
C.它可以绕过北京的正上方,所以我国能利用其进行电视转播
D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的
[解析]同步卫星的轨道半径是一定的,与其质量的大小无关.所以A项错误.因为在地面附近绕地球做匀速圆周运动的卫星的速度近似等于7.9 km/ s,而卫星的线速度随轨道半径的增大而减小,所以同步卫星的线速度一定小于7.9 km/s,实际计算表明它的线速度只有3.07 km/s。所以B项错误.因同步卫星的轨道在赤道的正上方,北京在赤道以北,所以同步轨道不可能过北京的正上方.所以C项错误.同步卫星的向心加速度 ,物体在地面上的重力加速度 ,依题意 ,所以 。D选项正确。
四、求天体的第一宇宙速度问题
人造地球卫星的线速度可用 求得 可得线速度与轨道的平方根成反比,当r=R时,线速度为最大值,最大值为7.9 km/s. (实际上人造卫星的轨道半径总是大于地球的半径,所以线速度总是小于7.9 km/s)这个线速度是地球人造卫星的最大线速度,也叫第一宇宙速度.发射人造卫星时,卫星发射的越高,克服地球的引力做功越大,发射越困难,所以人造地球卫星发射时,一般都发射到离地很近的轨道上,发射人造卫星的最小发射速度为7. 9 km/ s.
在其他的星体上发射人造卫星时,第一宇宙速度也可以用类似的方法计算,即 ,式中的M、R、g 分别表示某星体的质量、半径、星球表面的重力加速度.
[例5]若取地球的第一宇宙速度为8 km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这顺行星的第一宇宙速度约为( )
A. 2 km/s B. 4 km/s
C. 16 km/s D. 32 km/s
[解析]由 得 8 m/s,某行星的第一宇宙速度为
16 m/s
五、人造卫星的变轨问题
发射人造卫星要克服地球的引力做功,发射的越高,克服地球的引力做功越多,发射越困难.所以在发射同步卫星时先让它进入一个较低的近地轨道(停泊轨道)A,然后通过点火加速,使之做离心运动,进入一个椭圆轨道(转移轨道)B,当卫星到达椭圆轨道的远地点时,再次通过点火加速使其做离心运动,进人同步轨道C。
[例6]如图所示,轨道A与轨道B相切于P点,轨道B与轨道C相切于Q点,以下说法正确的是( )
A.卫星在轨道B上由P向Q运动的过程中速率越来越小
B.卫星在轨道C上经过Q点的速率大于在轨道A上经过P点的速率
C.卫星在轨道B上经过P时的向心加速度与在轨道A上经过P点的向心加速度是相等的
D.卫星在轨道B上经过Q点时受到地球的引力小于经过P点的时受到地球的引力
[解析]卫星在轨道B上由P到Q的过程中,远离地心,克服地球的引力做功,所以要做减速运动,所以速率是逐渐减小的,A项正确.卫星在A、C轨道上运行时,轨道半径不同,根据 可知轨道半径越大,线速度小,所以有 ,所以B项错误.卫星在A、B两轨道上经过P点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,C项正确、卫星在轨道B上经过Q点比经过P点时离地心的距离要远些,受地球的引力要小些,所以D项正确.
六、人造天体的交会对接问题
交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.
[例7]关于航天飞机与空间站对接问题,下列说法正确的是( )
A.先让航天飞机与空间站在同一轨道上,然后让航天飞机加速,即可实现对接
B.先让航天飞机与空间站在同一轨道上,然后让航天飞机减速,即可实现对接
C.先让航天飞机进入较低的轨道,然后再对其进行加速,即可实现对接
D.先让航天飞机进入较高的轨道,然后再对其进行加速,即可实现对接
[解析]航天飞机在轨道运行时,若突然对其加速时,地球对飞机的万有引力不足以提供航天飞机绕地球做圆周运动的向心力,航天飞机就会做离心运动,所以选项A、B、D不可能实现对接。正确答案为C项。
七、双星问题
两棵质量可以相比的恒星相互绕着旋转的现象,叫做双星.双星中两棵子星相互绕着旋转看作匀速圆周运动的向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.
[例8]两棵靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是( )
A.它们做圆周运动的角速度之比与其质量成反比
B.它们做圆周运动的线速度之比与其质量成反比
C.它们做圆周运动的半径与其质量成正比
D.它们做圆周运动的半径与其质量成反比
[解析]两子星绕连线上的某点做圆周运动的周期相等,角速度也相等.由 得线速度与两子星圆周运动的半径是成正比的.因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由 可知 ,所以它们的轨道半径与它们的质量是成反比的.而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的.正确答案为B、D选项.
八、地面上物体随地球自转做圆周运动问题
因地球自转,地球赤道上的物体也会随着一起绕地轴做圆周运动,这时物体受地球对物体的万有引力和地面的支持力作用,物体做圆周运动的向心力是由这两个力的合力提供,受力分析如图所示.
实际上,物体受到的万有引力产生了两个效果,一个效果是维持物体做圆周运动,另一个效果是对地面产生了压力的作用,所以可以将万有引力分解为两个分力:一个分力就是物体做圆周运动的向心力,另一个分力就是重力,如图所示.这个重力与地面对物体的支持力是一对平衡力.在赤道上时这些力在一条直线上.
在赤道上的物体随地球自转做圆周运动时,由万有引力定律和牛顿第二定律可得其动力学关系为 ,式中R、M、 、T分别为地球的半径、质量、自转角速度以及自转周期。
当赤道上的物体“飘”起来时,必须有地面对物体的支持力等于零,即N=0,这时物体做圆周运动的向心力完全由地球对物体的万有引力提供.由此可得赤道上的物体“飘”起来的条件是:由地球对物体的万有引力提供向心力。以上的分析对其它的自转的天体也是适用的。
[例9]地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球转动的角速度应为原来的( )
A. B. C. D.
[解析]设地球原来自转的角速度为 ,用F表示地球对赤道上的物体的万有引力, N表示地面对物体的支持力,由牛顿第二定律得 ①
而物体受到的支持力与物体的重力是一对平衡力,所以有 ②
当当赤道上的物体“飘”起来时,只有万有引力提供向心力,设此时地球转动的角速度为 ,有 ③
联立①、②、③三式可得 ,所以正确答案为B项。
㈨ 高一物理必修2 曲线运动 第5题求解析
水流抄速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。
怎样才能使漂下的距离最短呢?如图丙所示,
水流速度为Vs,已知船在静水中的速度为Vc
设船头Vc与河岸上游成θ角,合速度V与河岸下游成α角。
可以看出:α角越大,船漂下的距离x越短,那么在什么条件下α角最大呢?
以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,
根据cosθ=Vc/Vs,
船头与河岸的夹角应为:θ=arccosVc/Vs。
此时渡河的最短位移为:
选 C