中学磁力
⑴ 洛伦磁力的知识点解析
从阴极发射出来的电子束,在阴极和阳极间的高电压作用下,轰击到长条形的荧光屏上激发出荧光,可以在示波器上显示出电子束运动的径迹.实验表明,在没有外磁场时,电子束是沿直线前进的.如果把射线管放在蹄形磁铁的两极间,荧光屏上显示的电子束运动的径迹就发生了弯曲.这表明,运动电荷确实受到了磁场的作用力,这个力通常叫做洛伦兹力,它为荷兰物理学家H.A.洛伦兹首先提出,故得名。中学物理教科书中定义的洛仑兹力与大学电动力学教科书中定义的洛仑兹力不同。中学教科书的洛仑兹力只包括磁场部分,F=qv×B,因受力方向与运动方向垂直,故不做功,只改变运动方向。大学电动力学教科书中定义的洛仑兹力是所有的电磁力,既包括磁场部分,也包括电场部分,F=qv×B+qE. 电场部分当然有可能做功。这个小区别若不注意,会在讨论中引起一些误会。在电动力学里,洛伦兹力(Lorentz force)是运动于电磁场的带电粒子所受的力。根据洛伦兹力定律,洛伦兹力可以用方程,称为洛伦兹力方程,表达为F=q(E+v×B)其中, F是洛伦兹力, q是带电粒子的电荷量,E是电场强度, v是带电粒子的速度, B是磁感应强度。洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。感受到电场的作用,正电荷会朝着电场的方向加速;但是感受到磁场的作用,按照左手定则,正电荷会朝着垂直于速度V和磁场B的方向弯曲(详细地说,应用左手定则,当四指指电流方向,磁感线穿过手心时,大拇指方向为洛伦兹力方向)。洛伦兹力方程的qE项是电场力项,qv×B项是磁场力项。处于磁场内的载电导线感受到的磁场力就是这洛伦兹力的磁场力分量。洛伦兹力方程的积分形式为F=∫V(pE+J×B)dr。其中,V是积分的体积,p是电荷密度,J是电流密度,dr是微小体元素。经常使用的公式还有洛伦兹力密度f的表达式:f=pE+ρv×B=pE+J×B。若带电粒子射入匀强磁场内,它的速度与磁场间夹角为0<θ<2/π这个粒子将作等距螺旋线运动(沿B方向的匀速直线运动和垂直于B的匀速圆周运动的和运动。)螺旋半径,周期和螺距为图螺旋半径,周期和螺距简述1895年荷兰物理学家H.A.洛伦兹建立经典电子论时,作为基本假设提出来的,现已为大量实验证实。洛伦兹力的公式是f=qvB(适用条件:磁场是匀强磁场,v与B方向垂直)。式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。洛伦兹力的方向循左手定则(左手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内;把左手放入磁场中,让磁感线垂直穿入手心(手心对准 N极,手背对准S极,四指指向电流方向(即正电荷运动的方向v),则拇指的方向就是导体或正电荷受力方向)垂直于v和B构成的平面(若q为负电荷,则反向)。由于洛伦兹力始终垂直于电荷的速度方向和磁场方向确定的平面,所以它对电荷不作功,不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。洛伦兹力既适用于宏观电荷,也适用于微观荷电粒子。电流元在磁场中所受安培力就是其中运动电荷所受洛伦兹力的宏观表现。导体回路在恒定磁场中运动,使其中磁通量变化而产生的动生电动势也是洛伦兹力的结果,洛伦兹力是产生动生电动势的非静电力。如果电场E和磁场B并存,则运动点电荷受力为电场力和磁场力之和,为F=Q(E+v×B)【注】公式中E、B为矢量,右式一般也称为洛伦兹力公式。洛伦兹力公式和麦克斯韦方程组以及介质方程一起构成了经典电动力学的基础。在许多科学仪器和工业设备,例如β谱仪,质谱仪,粒子加速器,电子显微镜,磁镜装置,霍尔器件中,洛伦兹力都有广泛应用。值得指出的是,既然安培力是洛伦兹力的宏观表现,洛伦兹力对运动电荷不作功,何以安培力能对载流导线作功呢?实际上洛伦兹力起了传递能量的作用,当导线运动的时候,洛伦兹力的一部分指向电荷运动的反方向,阻碍电荷运动作负功,形成动生电动势;另一部分构成安培力,对载流导线作正功,结果仍是由平衡动生电动势,维持电流的电源提供了能量。
⑵ 磁力在微观下是如何作用的 有办法证明场这个东西的存在吗
电子有轨道角动量和自旋角动量。4大量子数中的自旋和磁量子数都和磁力相关。楼主应该听说过核磁共振吧,就是说在磁场的作用下,自旋会产生一定的作用,而使能级出现分裂。在微观条件下,考虑相对论的情况,电磁的麦柯斯韦方程由同一的电磁场方程来描述,就是所谓的量子电动力学。但总体上说,磁力在微观领域里面也是和电连在一起的,除了要注意量子化之外,大体上讲处理方式(注意仅仅是处理方式)和宏观差不多。
场最初不是什么东西,仅仅是一个和能量相关的物理量的空间分布就是一个场。但是后来在康川秀树(我忘了,是不是叫这个名字,日本第一个诺奖得主)的二次量子化理论之后,场和波粒二相性联系起来,才有了场是物质的说法。其实任何一个电学实验都可以证明电场的存在。
⑶ 磁场是什么东西,以前中学物理有学过,现在忘了
(简易定义:能够产生磁力的空间存在着磁场。磁场是一种特殊的物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。)
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。
与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。
磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。 地球的磁级与地理的两极相反.
磁场方向:规定小磁针的北极在磁场中某点所受磁场力的方向为该电磁场的方向。
磁感线:在磁场中画一些曲线,使曲线上任何一点的切线方向都跟这一点的磁场方向相同,这些曲线叫磁力线。磁力线是闭合曲线。规定小磁针的北极所指的方向为磁力线的方向。磁铁周围的磁力线都是从N极出来进入S极,在磁体内部磁力线从S极到N极。
⑷ 今年物理广东卷考电学还是磁力
根据查询相关资料显示:磁力。广东2022年开始磁力课程改革,全新的理念和教材极大地促进了中学物理磁力教学观念的转变,普通高中物理磁力课程标准、考试说明成为高三物理学教师高考复习磁力教学的指南,顺应了复习磁力教学的需要。
⑸ 磁力是什么
1。磁场是由于地球内部热核发热使得地表和地核存在温度差形成了磁场,这个磁场可是地球的保护伞,他使得宇宙中的很多有害射线偏离地球,2。磁力是会消失的,一般称为永磁体的磁铁是经过加磁处理的,磁铁的材料是经过研究选定的经济的并且有效保留磁力的材料,它的磁力可以存在很久。一般的铁。钴。镊等物质可以被磁化。所以可以被磁铁吸引,当铁靠近磁体时,他本身被磁化,所以被磁化的铁也具有磁性,3。最早发现磁可以转化成电流的是奥斯特,环形的导体在磁场中运动可以产生电流,水力发电,风力发电,都是这个原理,运用外力使线圈(环形的导体)在磁场中运动发电,可以参看高中物理教材,另外电流也可以产生磁场,最早是法拉第发现的,这些高1高2 的物理课本都有详细的介绍,呵呵,希望你对我的回答满意!!
⑹ 磁力计算方法
在磁场中放一根导线,与磁场方向成α角度,导线受力F,则磁场强度B=F/ILsinα.
又磁感强度是这样定义的,一个点电荷,电量为q(正电荷为正),电荷以速度v与磁场方向成α角度运动,此时电荷受礼为F,则磁感强度B=F/qvsinα.
前一个公式是可以由后一个推倒出来的
⑺ 求中学全部公式概念
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%
⑻ 铁芯的粗细与磁力大小有很大关系吗
你的提问显然属于小学科学的水平,只有小学教材基于不严格的概念,才会混淆“磁力大小”和“磁性强弱”。
到了中学阶段,就会知道:磁力大小不是磁铁(电磁铁)单方面的事情,而是和被磁铁吸引(或排斥)的另一个物体也有关系。即:磁力的大小,由施力物体和受力物体共同决定。
例如,用同一块磁铁在同样的距离,去吸引一根细细的大头钉,与吸引一根筷子粗的铁钉,磁力大小怎么可能一样?一定是吸引铁钉的磁力要大得多。
所以,到了初中以后,不再说“磁铁的磁力大小”,而是说“磁性强弱”。到了高中,更是用“磁感应强度”来表述“磁性强弱”。
现在回到你的问题:对于电磁铁来说,同一个铁芯,线圈缠绕的匝数越多、通过越强的电流,则电磁铁的磁性越强。用专业术语讲,就是磁性强弱取决于电流值与匝数的乘积(所谓的安匝数)。但是,匝数也不是越多越好,安匝数达到一定程度,铁芯会出现“磁饱和”现象,此时,再继续增大电流或增大匝数,磁性也不会继续增强的。
对于确定的电流值和确定的匝数来说,铁芯大小、粗细当然会对磁极附近磁性的强弱有影响。你可以用极限法来推理,如果粗细没有影响,我们为什么不用尽量细的铁芯来节省材料呢?我们干脆用无限细的铁芯算了,无限细的结果就是取消了铁芯。