双曲线教学设计
❶ 反比例函数的图像和性质教案
反比例函数的图像和性质教案(精选8篇)
在教学工作者实际的教学活动中,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?以下是我收集整理的反比例函数的图像和性质教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
反比例函数的图像和性质教案 篇1
一、教材依据
人教版八年级第十七章《反比例函数》
二、设计思路
(一)教材分析
本节课讲述内容是在理解反比例函数的意义和概念、掌握了反比例函数的画法的基础上学习的,反比例函数的图象与性质的探索是对函数概念的深化,同时也是下一节反比例函数应用的基础,有了本节课的知识储备,便于学生利用函数的观点、数形结合的思想来处理问题和解释问题。
(二)教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想通过教师引导,学生积极“探究——讨论——交流——总结”,同时在教学中通过演示,操作,观察,练习等师生的共同活动,让每个学生动手、动口、动眼、动脑,培养学生观察能力、直觉思维能力。
(三)学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想,体会数形结合的思想。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。
三、教学目标
(一)知识目标
探索并掌握反比例函数的主要性质,逐步提高从函数图象获取信息的能力,体会数形结合的思想
(二)能力目标
通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力
(三)情感与价值观
让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲
四、教学重点
探索反比例函数的性质,体会数形结合的思想
五、教学难点
反比例函数的图象特点及性质的探索
六、教学准备
学生课前将函数图象画在黑板上(两个)
七、教学过程
反比例函数的图象与性质(二)教学案
(一)学习目标:
1、探究反比例函数的性质
2、体验数形结合的数学思想
(二)自学及学法指导:
1、用列表法画函数y=和的图象(学生课前板画在黑板上)
2、结合P41函数和的图象和黑板所画图象思考下列问题(小组讨论完成)
(1)所画的图象是什么形状?
(2)每个函数的图象分别位于哪几个象限?
(3)在每个象限内y随x的变化是如何变化的?
(4)图象与x轴、y轴能相交吗?为什么?
3、归纳总结:反比例函数的性质(小组轮流回答)
(1)反比例函数(k为常数,k≠0)的图象是
(2)当k>0时,双曲线的两分支分别位于象限__在每个象限内,y值随x值的增大而___
(3)当k<0时,双曲线的两分支分别位于象限___,在每个象限内,y值随x值的增大而___
八、教学反思
通过本节课教学,我认为满意的地方有:
1、课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中,同时注重了学生的合作交流,在学生尝试探索反比例函数的性质前和后都安排了同桌交流、小组合作交流,之后又鼓励学生上讲台交流,让学生在不断交流中掌握反比例函数的性质,体会树形结合的思想。
2、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展;让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,只有这样,才能极大地释放孩子的潜能。
今后应注意以下几个方面:
1、教学观念还要不断更新,更大限度地把时间还给学生,把课堂还给学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2、对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
3、这节课如果能利用多媒体课件,例题的展示将会更快,整节课将会更加丰满。
反比例函数的图像和性质教案 篇2
一、教材分析:
本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。
二、教学目标:
知识与技能:
(1)作反比例函数的图象。
(2)掌握反比例函数的图象与性质。
过程与方法:
逐步提高从函数图象中获取信息的能力,和数形结合的能力。
情感、态度与价值观:
培养学生积极参与,乐于探究,善于交流的意识和习惯。
三、教学重难点
教学重点:学习反比例函数图象的画法,概括反比例函数图象的共同特征。
教学难点:从反比例函数的图象中归纳总结反比例函数的主要性质。
四、教学过程:
(一)创设情境、提出问题
我们已经知道一次函数的图象是一条直线,那么反比例函数(k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢?(让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想)
(二)动手实践、解决问题
1、画图:画出反比例函数的图象在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。
师:画函数图象的第一个步骤是什么?
生:列表。
师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?
生:应注意自变量x的取值范围,本题当中x≠0。
师:是不是把所有的x不等于零的值全都列举出来?
生:不是。
师:那怎么取值呢?(学生讨论)
生:为了便于计算和描点,我们通常取x>0和x<0的一些整数值。
师:(大屏幕投影)那么,对应的y值分别是多少呢?(学生填表、口答答案。)
目的:让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。
师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点?
生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。
①学生描点
②教师利用多媒体课件演示描点的动画过程。
友情提醒:描点可要细心哦!
目的:让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。
师:如何把描出的点连接起来,从而画出它的图象呢?
①学生连接。
②教师利用实物投影仪展示学生成果。
师:这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论)
生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。
师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式的点,比如横坐标在大于1小于2之间?
师:那么,应当用什么样的线来连接呢?
生:应当用平滑的曲线顺次连接。
目的:师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的结论:应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数的图象。
2、猜想:反比例函数的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。
师:刚才,我们画出了k=6时,反比例函数的图象。请同学们猜想一下,k=-6时,反比例函数的图象在什么象限?为什么?
生:图象分布在二、四象限。由k=-6得xy=-6所以x、y异号所以反比例函数的图象分布在二、四象限。
3、师:请同学们画图验证自己的猜想。
4、①学生画图验证
②相互交流成果检验自己的猜想是否正确。
目的:让学生先类比k=6时,反比例函数的图象的位置,猜想k=-6时,反比例函数的图象的位置;然后,再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。
师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数的图象具有那些特征(学生分组讨论)
生:①一次函数的图象是一条直线,反比例函数的图象是由两个分支组成的,而且都是曲线;
②一次函数的图象与x、y轴有交点,反比例函数的图象与x、y轴没有交点;
③反比例函数的图象的两个分支关于原点成中心对称。
④反比例函数的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点;
师:反比例函数的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。
设计目的:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。)
五、本节课你学到了什么?有哪些收获?
生:①画反比例函数的图象的方法
②知道了反比例函数的图象是双曲线
③反比例函数的图象不与坐标轴有交点
④反比例函数的图象是中心对称图形
反比例函数的图像和性质教案 篇3
教学目标:
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点
运用反比例函数解决实际问题
教学难点
运用反比例函数解决实际问题
教学过程:
一、情景创设
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中S一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
三、课堂练习
课本P74练习1、2题
四、课堂小结
反比例函数的应用
五、课堂作业
课本P75习题9.3第1、2题
反比例函数的图像和性质教案 篇4
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。
(3)(k0)还可以写成(k0)或xy=k(k0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
反比例函数的图像和性质教案 篇5
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点: 掌握从实际问题中建构反比例函数模型。
难点: 从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
反比例函数的图像和性质教案 篇6
一、教学设计思路
1.本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的'过程。
2.对教材的分析
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
二、教学过程
(一)作图象,试比较
1、提问:
(1)=4/x是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作=—4/x的图象3、对照你所作的两个函数图象,找一下它们的相同点和不同点。
(二)细观察,找规律
1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
(三)用规律,练一练
1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限
的有哪几个?在其图象所在象限内,的值随x的增大而增
大的有哪几个?
(四)想一想,作小结
(五)作业 :
课本137页第1题、141页第2题
反比例函数的图像和性质教案 篇7
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
反比例函数的图像和性质教案 篇8
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题
难点:根据实际问题中的条件确定反比例函数的解析式
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______。
(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
二、新授:
例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部S与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
三、课堂练习
1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数,当V=103时,=1.43g/3
(1)求与V的函数关系式;
(2)求当V=23时求氧气的密度
2、某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,等于-0.8。
(1)求与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)]
3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE,求与x之间的函数关系式及自变量x的取值范围。
四、 作业
30.3——1、2、3
;❷ 我想做份初中数学课题课教学设计,能帮助吗
专题讲座初中数学中函数课堂教学设计
函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?本文就初中函数教学中三个常见问题,谈谈在教学设计方面一些方法和实践。
一、函数教学中基于数学思想的教学方式的研究
数学知识的教学有两条线:一条是明线,即数学知识;一条是暗线,即数学思想方法。单独教授知识无益于课本的复读,利用数学思想进行教学和学习,才能真正实现数学能力的提高。
数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是形成数学意识和数学能力的桥梁,是灵活运用数学知识、数学技能和数学方法解决有关问题的灵魂。 日本数学教育家米山国藏在《数学的精神、思想和方法》一文中曾写道:学生在初中、高中等所接受的数学知识,因毕业进入社会后几乎没有什么机会应用这种作为知识的数学,所以,通常是出校门后不到一两年便很快就忘掉了。然而不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法、研究方法、推理方法和着眼点等都随时随地发生作用,使他们受益终身。因此,在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。
1 .注重“类比教学”
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法, 利用类比的思想进行教学设计实施教学 , 可称为“类比教学” .
在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.
有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。
《正比例函数》教学流程
(一)环节一:概念的建立
通过对问题的处理用函数 y=200x 来反映燕鸥的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。
(二)环节二 :函数图象
这个环节是教学的重点,由学生先动手按“列表——描点——连线”的过程画函数 y=2x 和 y= - 2x 的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。
(三)环节三:探究函数性质
让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。
(四)环节四:概念的归纳
将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。
(五) 环节五: 概念的应用
这个环节主要加深学生对知识点的理解,突出待定系数法的解题方法。
从这五个环节的设定上,大家不难看出,我们在研究一次函数、反比例函数、二次函数的过程也是经历这样的六个环节,所以用类比的教学方式是在降低学生的学习难度,却能提高学习质量,而且程度比较好的学生可以尝试自主学习一次函数、反比例函数、二次函数。
归纳:函数探究的内容与方法
研究的对象 ------ 函数的图象与性质
研究的方法 ------- 画图象、分析图象、探究坐标变化规律、归纳函数性质
关注的问题 ------- 图象的位置、发展趋势、与坐标轴的交点、函数的增减性 ……
类比进行反比例函数的教学
例如 17.1.2 反比例函数的图象和性质教学
具体教学过程如下:
T :正比例函数 y=6x 的图象是什么形状?
S1 :通过原点的直线(为将要学习的反比例函数图象作铺垫)
T :那么反比例函数 的图象会是什么形状呢?我们采用什么办法画呢
S2 :描点法。
(问题一) T :我们学习过的一次函数用几点法描画?
S3 :两点法。
(追问) T :为什么呢?
S4 :根据两点确定一条直线。
(追问) T :你确定反比例函数的图象是直线吗?
S5 :不能确定。
(追问) T :因此我们需要描多少点?
S6 :尽量多些。正负对称 10 — 12 个点比较合适
(问题二) T :描点法画函数图象的基本步骤?
S7 :……
T :对于 我们如何列表取点?
S8 :……再次突出描点左右对称取点的思维过程。
教师示范了 的图象画法,再让同学们尝试画出 的图象
(问题三) T :你能比较出 和 的图象有什么共同特征?
S9 :两只曲线,关于原点对称(双曲线)
(追问) T 结合你的图象和列表 和 之间的不同点?
S10 : 在一、三象限, 在二、四象限。
(追问) T :你能猜想 的图象规律吗,注意类比正比例函数的图象规律?
S11 :当 k>0, 图象过一三象限,当 K<0 ,图象过二、四象限。
(追问) T 请再画一组 的图象,验证你的猜想
(问题四) T :通过以上的猜想和验证,你能总结出反比例函数图象的位置规律吗?
S12 :归纳 S13 :纠错 S14 :改正
这是本课时的引入部分,教师通过问题串,把反比例函数图象的定义、图象规律与正比例函数图象联系在一起,教师的设计思路就是采用类比的数学思想,让学生通过类比的数学思想,自主的学习反比例函数图象的定义与性质,学得自然,轻松。
T :能否把反比例函数图象特征总结一下?
类比正比例函数图象的特征:
反比例函数 正比例函数
图象
位置
增减性
T :你有什么启发?你发现了什么?……
显然是教师采用了类比教学思路的结果,开启了学生思维的大门,找到了学习新知的有效方法与途径。
对于类比推理的研究最具影响的是波利亚.波利亚在他的著作《怎样解题》、《数学与猜想》、《数学的发现》中,通过对数学史上一些著名猜想的剖析,再现了一些重大发现产生的渊源及过程,认为归纳和类比是两种最基本的猜测方法,并以此为据提出了合情推理的一般模式.认为类比就是某种类型的相似性.通过具体的例子论述了合情推理 ( 归纳、类比 ) 在数学发现和解题方面的作用.他还结合中学数学教学实际呼吁: “ 要教学生猜想,要教合情推理。
因此我也在此呼呼:初中函数要有整体设计的意识,就是上好《正比例函数》,类比学习《一次函数》、《反比例函数》、《一次函数》。
2. 注重“数学结合”的教学
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:
( 1 )让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
( 2 )切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
( 3 )注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
下面我就具体函数教学过程中如何体现数形结合思想举例说明:
《一次函数的图象》教学设计片断
①猜想一次函数的图象会是什么形状?
②验证:在同一平面直角坐标系中画出下列函数的图象 .
y=3x,y=3x-3,y=-2x,y=-2x-3
③归纳(不完全归纳法):一次函数的图象是一条直线,当 k>0 时,直线从左到右呈“起飞”状,即呈上升趋势,经过一、三象限;当 k<0 时,直线从左到又呈“降落”状,即呈下降趋势,经过二、四象限 .
④思考:不同的一次函数,他们图象的形状是相同的,但位置却各不相同,那么一次函数的图象的位置与什么有关呢?
⑤确定研究方法。通过学生的观察、思考、交流以及教师的点拨,学生最终得出:一次函数图象的位置与解析式中的待定参数 k 与 b 的取值有关。教师进一步指出:在研究含有两个参数的问题时,要先固定一个,进而能明晰地研究出另一个参数在“数”上的变化,导致“形”上的差异。
⑥进一步观察刚才画的四个一次函数图象,思考: k 相同, b 不同的一次函数图象之间有何关系? k 不同, b 相同的一次函数图象之间有何关系?
⑦归纳: k 相同, b 不同的一次函数图象相互平行,将直线 y=kx 向上或向下平移 ∣ b ∣个单位可得直线 y=kx+b;k 不同, b 相同的一次函数图象相交于点( 0 , b ) .
在这个教学设计中,由于学生明确了函数图象的研究方法,参与了研究过程,因而对于知识的理解是深刻的、牢固的、灵活的,更重要的是学生体验到了一种研究函数图象的一般方法,提高了学生的自主学习能力和思维水平。
二、函数教学过程中几个难点的处理:
作为初中数学中的难点,函数抽象而富于变化,在一线教学中老师普遍认为有以下几个问题是教学中的难点,老师不好讲,学生不好学。下面我具体举一些教学设计给各位老师参考看是如何突破我们教学中的难点的:
1 .反比例函数的增减性问题。
在反比例函数教学时,反比例函数的增减性是个难点。不仅 k 的正负上反比例函数的增减性和正比例函数的增减性相反,而且自变量的取值范围上有断点。下面我们看看这个教学设计是如何突破难点的?
《反比例函数的性质》教学设计片断
( 1 )回顾反比例函数图象特征
( 2 )画出反比例函数 图象,并结合图象,思考下列问题 :
(问题一) T :①当图象上的一个点,沿着第一象限的图象从左向右运动时,点的坐标怎样变化 ? 这说明在第一象限内,当自变量增大时,函数值是怎样变化的?(课件演示点的运动及坐标的变化)
(追问) T :②当图象上的一个点,沿着第三象限的图象从左向右运动时,点的坐标怎样变化?这说明在第三象限内,当自变量增大时,函数值是怎样变化的?(课件演示点的运动及坐标的变化)
(追问) T: ③当点 A ( x1,y1)在第一象限图象上,点 B( x2,y2) 在第三象限的图象上, x1与 x2的大小关系如何? y1与 y2呢?此时①②中的结论还成立吗 ?
(问题二) T :⑶一般的,反比例函数 ,当 k>0 时,随着 x 的增大, y 的值怎样变化呢 ?
(追问) T: ⑷如何用符号语言描述呢?
(追问) T: ⑸你能从解析式出发给出证明吗?
(问题三) T:(6) 你能从 的图象中 y 随 x 的变化是如何增减的吗?
(问题四) T: ( 7 )画出反比例函数 图象,并结合图象,思考下列问题……
在上面的教学设计中,教师借助几何画板课件,帮助学生形象直观的理解了反比例函数图象的变化规律,发现变化过程中的特殊点的,自然的归纳出反比例函数增减性的性质及自变量的取值范围,并且通过结合符号语言和解析式全方位诠释增减性的意义。学生不但理解而且记忆,而且途径全面,更好的感受到函数的三种表示方法的整体一致性。
2 .用函数来求解方程(组)、不等式问题
用函数来求解方程(组)、不等式问题比较难教,因为学生会觉得,用函数的方法求方程(组)与不等式解的方法一点也不简单,比以前的方法复杂、繁琐多了,那为什么还要学习呢?如果学生意识不到所学数学知识的价值与意义,势必影响学习效率。
教材安排用函数的观点看方程(组)、不等式,一方面是为了加强数学知识间的横纵联系,体现函数在初中代数中的统领作用;另一方面从函数的角度,由“数”到“形”的对方程(组)、不等式加深认识,从而站在更高的角度上,提高了学生对旧认识的深度。在教学设计中要注意以下几点:
( 1 )从“数”与“形”两方面体现函数与方程(组)、不等式的联系
从“数”来看,就是从函数值看,求方程的解,可转化为当函数值为零时,求相应自变量的值;求不等式的解集,就是当函数值大于零(或小于零)时,求对应的自变量的取值范围;求方程组的解,就是当两个函数的函数值相等时,求对应的自变量和函数值 .
从“形”来看,就是从函数图象看,求方程的解,可转化为求函数图象与 x 轴交点的横坐标;求不等式的解集,可转化为求在 x 轴上方(或下方)的图象对应的自变量取值范围(或一个函数图象在另一个函数图象的上方或下方的部分对应的自变量取值范围);求方程组的解集,可转化为求两个函数图象交点的横纵坐标。
( 2 )抓住数与形的转换点理解函数与方程(组)、不等式的联系
众所周知,函数图象就是点的集合,函数图象上的每一个点的坐标,就是一组自变量与函数值的对应值,因此数与形的转换点就是图象上的点及其坐标。教学中抓住这一转换点,能有效的促进对函数与方程(组)、不等式的关系的理解。
《一次函数与一元一次不等式》教学设计片断
(一)如何解决下面两个问题,并思考这两个问题之间有何关系?
①解不等式: 5x+6>3x+10 ;
②当自变量为 x 何值时,函数 y=2x-4 的值大于 0 ?
归纳:这两个问题实际上是同一个问题,问题①可以转化为问题②求解
(二)你能从函数 y=2x-4 的图象中,发现问题①的解集吗?
为了促进学生的理解,教师可从以下几个方面点拨 :
ⅰ函数值与函数图象上的点的什么是对应的?函数 y=2x-4 的图象上,符合函数值大于 0 的点在哪一部分?
ⅱ这部分点的什么,就是使函数 y=2x-4 的值大于 0 的自变量 x 的取值范围?
归纳:函数 y=2x-4 图象在 x 轴上方的部分所对应的横坐标的取值范围,就是问题①得解集
(三)函数 y=2x-4 图象在 x 轴下方的部分所对应的横坐标的取值范围,是哪个不等式的解集?
(四)你能进一步得到“解不等式 ax+b>0 与“求自变量 x 在什么范围内,一次函数函数 y=ax+b 的值大于 0 ” 有什么关系吗? 在上面的教学设计中,教师通过引导学生按照“函数值大于 0 →图象上点的纵坐标大于 0 →位于 x 轴上方的点→横坐标的取值范围→自变量的取值范围”的思维脉络,紧扣数与形的结合点,不仅让学生真正理解了函数与不等式的关系,更重要的是使学生真正做到了用数形结合的方法分析问题。
( 3 )使学生明确学习函数与方程(组)、不等式的意义。有些学生可能觉得,用函数的方法求方程(组)与不等式解的方法一点也不简单,比以前的方法复杂、繁琐多了,那为什么还要学习呢?如果学生意识不到所学数学知识的价值与意义,势必影响学习效率。因此,在教学中首先应使学生体会到以下两点:
①解方程(组)与解不等式的问题,都可以化归为函数问题,所以函数统率着方程、不等式;
②从函数的角度分析问题的研究方法,对于后续学习有重要作用。
3.自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。 容易讲的枯燥无趣,最后变成公式化记忆,但学生总是此题会,彼题又错,效果往往不好。我们看这个教学设计,生动活泼而且理解深刻。
八年级 7.2 认识函数( 2 )
例 1 等腰三角形 ABC 的周长为 80 ,底边 BC 长为 y ,腰 AB 长为 x ,
求:( 1 ) y 关于 x 的函数解析式
学生尝试做题
S1 : y=80-2x
S2 : x=(80-y)/2
T :题目是 y 关于 x ,其中关于相当于等于,所以应该写成 y=80-2x
T :把你的学号作为三角形的腰长,请计算相应的底边 y 值
学生快速的计算
教师在黑板上列出相关的值:
x=0 (教师的学号为 0 ) y=80
x=10 y=60
x=20 y=40
x=30 y=20
x=40 y=0
x=50 y= -20
x=51 y= -22
(问题一) T : x 表示三角形的腰, y 表示三角形的底边,你看到这组数据有什么话要说么?
S1 :不能是负与 0 ,所以最后三个不行。
(追问 1 ) T :能分享你结论的理由么?
S1 : y 是底边,需要大于 0
T :自变量的取值需要符合函数的实际意义
这时下面有个同学在悄悄的说,第一个也不行。
(追问 2 ) T :能说说你的理由么?
S2 :因为 x 是等腰三角形的腰长,也是大于 0 的。
T :自变量的取值必须满足自变量的实际意义
这时,课堂中学生都在用质疑的眼神重新观察题目,重新思考,这时教师让学生进行讨论。经过一段时间的讨论,有学生举手了。
S3 :第 2 、 3 个也不行
(追问 3 ) T :为什么?
S2 :不能构成三角形
(问题二) T :那么 x 能不能任意取呢?
S :不能
(问题三) T :那应该从哪几个方面求 x 的取值范围呢?
S1 : 20<x<40
T :你解释一下你是怎么想到的?
S1 :三角形任意两边之和大于第三边
T :我们一起来梳理此题求 x 的取值范围的方法
教师板书:
求 x 的取值范围
( 1 )自变量 x 的实际意义 x>0
T :刚才同学们考虑到了函数 y 的取值范围,而 y=80-2x ,所以还要考虑与 x 相关的量的意义
板书( 2 )与 x 相关的量的意义 y>0
(问题四) T :除了这两个量还要考虑到什么呢?
S :三角形任何两边之和大于第三边
板书( 3 )在实际情境中满足限制的条件
T :等腰三角形只要考虑 x+x>y
实际问题——解析式——求函数值——冲突——反思——探究——归纳。
在这里,是第一次求自变量的取值范围,而学生对自变量的取值范围的求解还没有形成一种常规的思路,所以,老师通过实际的操作( 80cm 长的红丝线),让学生在动手实践中了解腰、底边、底角、顶角、面积等之间的变化情况,然后列出底边与腰长之间的函数解析式,再给定一个自变量(学生学号作为腰长)求出相应的函数值,一方面复习了函数的有关概念——变量、常量、函数,另一方面也让学生学习了列简单问题中的函数解析式,根据函数解析式,已知自变量的值,求相应的函数值,更重要的是通过学号作为三角形的腰长,计算相应的底边 y 值,教师通过递进式提问,让学生在具体的、特殊的数值中发现矛盾,产生冲突,引起进一步探索的求知欲,提问、追问、反问,学生的解释、说理,由特殊到一般,最后总结出求自变量的取值范围的通性通法,有一种水到渠成、一气呵成的气势。
4 . 实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函 数与实际的应用。
对于学生来说,实际应用是个难点。在实际应用问题的教学中注意把握以下
几点:
( 1 )切实体现教材设计意图。教材安排有关应用函数解决实际问题的教学活动,其目的
主要有三 : ①进一步训练学生的建模能力;②进一步提高学生数形结合分析问题、解决问题的能力;③使学生体会函数是解决生活实际问题的有效模型,进一步提高学生解决实际问题的能力。在教学设计中要体现以上意图。
( 2 )要根据学生实际。对于学生而言,函数已经觉得很难,再用函数解决实际问题,他们会觉得难上加难,因此在教学中要根据学生实际水平,对于难度较大、综合性较强的
问题要通过有效的设计,分步引导,将复杂问题分解为若干个简单问题,步步深入,有易到难的寻求答案。
例 4 A 地有肥料 200 吨, B 地有肥料 300 吨,现要把这些肥料全部运往 C 、 D 两地。如果从 A 地往 C 、 D 两地运送肥料的费用为每吨 20 元和 25 元;从 B 地往 C 、 D 两地运送肥料的费用为每吨 15 元和 24 元 . 现 C 乡需要肥料 240 吨, D 乡需要肥料 260 吨 , 怎样调运总费用最少?最少费用是多少?
分析:本题的难点有三处:难点一是如何让学生想到可用函数解决这类问题;难点二是如何从复杂的数量关系中,列出函数解析式;难点三是如何分析出函数的最小值;难点四是将数学的解还原为实际问题的解决方案。为了突破难点,不妨采用如下的教学设计:
① 画出示意图,帮助学生理解题意
② 调运费用和哪些量有关?这些量有何关系?
这些量是变量还是常量?
(通过这个问题,启发学生发现调用费用是一
个变量,并且与四个变量有关,这四个变量相
互联系,其他变量都可以用另一个变量表示,既然
是和两个变量有关的问题,符合函数特征,利用函
数的图形和性质可以确定最小值)
③ 设总运费为 y , A 地运往 C 地的肥料量为 x ,填充下表:
y= ________+ ________+ ________+________
④ 怎样利用函数解析式求最小运费呢?
(教师引导学生发现,求最小运费就是求解析式中函数 y 的最小值,
一方面从解析式中可以发现, y 随 x 的增大而增大,所以求 y 的最
值需先求 x 的取值范围;另一方面也可画出函数图象,让学生通过
观察图象,发现 y 的最小值)
⑤当调运费用最少时,其他的调运量多少?请你确定出使运费最少的调用方案 .
归纳总结:
ⅰ为什么本题可用函数的方法解决 ? 用函数解决实际问题的一般步骤是什么?
ⅱ怎样列出函数解析式?
ⅲ函数的最值可用哪些方法求出?
ⅳ在实际问题中,求自变量的取值范围有何作用?
对研究其他函数图象时,学生的自主分析能力的提高也很有好处。