当前位置:首页 » 教学教育 » 齿轮教学设计

齿轮教学设计

发布时间: 2023-09-08 07:13:27

⑴ 2020高中物理圆周运动教案大全

在物理学中,圆周运动(circular motion)是在圆上转圈:一个圆形路径或轨迹。当考虑一件物体的圆周运动时,物体的体积大小可以被忽略,并将其看成一质点(在空气动力学上除外)。接下来是我为大家整理的2020高中物理圆周运动教案大全,希望大家喜欢!

2020高中物理圆周运动教案大全一

圆周运动

一、考纲要求

1.掌握描述圆周运动的物理量及它们之间的关系

2.理解向心力公式并能应用;了解物体做离心运动的条件.

二、知识梳理

1.描述圆周运动的物理量

(1)线速度:描述物体圆周运动快慢的物理量.

v= = .

(2)角速度:描述物体绕圆心转动快慢的物理量.

ω= = .

(3)周期和频率:描述物体绕圆心转动快慢的物理量.

T= ,T= .

(4)向心加速度:描述速度方向变化快慢的物理量.

an=rω2= =ωv= r.

2.向心力

(1)作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.

(2)大小:F=m =mω2r=m =mωv=4π2mf2r

(3)方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.

(4)来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.

3.匀速圆周运动与非匀速圆周运动

(1)匀速圆周运动

①定义:线速度大小不变的圆周运动 .

②性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动.

③质点做匀速圆周运动的条件

合力大小不变,方向始终与速度方向垂直且指向圆心.

(2)非匀速圆周运动

①定义:线速度大小、方向均发生变化的圆周运动.

②合力的作用

a.合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的方向.

b.合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的大小.

4.离心运动

(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切

线方向飞出去的倾向.

(2)受力特点(如图所示)

①当F=mrω2时,物体做匀速圆周运动;

②当F=0时,物体沿切线方向飞出;

③当F

为实际提供的向心力.

④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.

三、要点精析

1.圆周运动各物理量间的关系

2.对公式v=ωr和a= =ω2r的理解

(1)由v=ωr知,r一定时,v与ω成正比;ω一定时,v与r成正比;v一定时,ω与r成反比.

(2)由a= =ω2r知,在v一定时,a与r成反比;在ω一定时,a与r成正比.

3.常见的三种传动方式及特点

(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB.

(2)摩擦传动:如图甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.

(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.

4.向心力的来源

向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.

5.向心力的确定

(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.

(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.

6.圆周运动中的临界问题

临界问题广泛地存在于中学物理中,解答临界问题的关键是准确判断临界状态,再选择相应的规律灵活求解,其解题步骤为:

(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态.

(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.

(3)选择物理规律:当确定了物体运动的临界状态和临界条件后,对于不同的运动过程或现象,要分别选择相对应的物理规律,然后再列方程求解.

7.竖直平面内圆周运动的“轻绳、轻杆”

[模型概述]

在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类.一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.

[模型条件]

(1)物体在竖直平面内做变速圆周运动.

(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.

[模型特点]

该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:

? 绳模型 杆模型 常见类型 均是没有支撑的小球 均是有支撑的小球 过最高点的临界条件 由mg=m 得v临= 由小球恰能做圆周运动得v临=0 讨论分析 (1)过最高点时,v≥ ,FN+mg=m ,绳、圆轨道对球产生弹力FN(2)不能过最高点时,v< ,在到达最高点前小球已经脱离了圆轨道 (1)当v=0时,FN=mg,FN为支持力,沿半径背离圆心(2)当0 时,FN+mg=m ,FN指向圆心并随v的增大而增大

四、典型例题

1.质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为la、lb,如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,则(? )

A.小球仍在水平面内做匀速圆周运动 B.在绳b被烧断瞬间,绳a中张力突然增大 C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动 D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为mω2lb 【答案】BC

【解析】根据题意,在绳b被烧断之前,小球绕BC轴做匀速圆周运动,竖直方向上受力平衡,绳a的拉力等于mg,D错误;绳b被烧断的同时轻杆停止转动,此时小球具有垂直平面ABC向外的速度,小球将在垂直于平面ABC的平面内运动,若ω较大,则在该平面内做圆周运动,若ω较小,则在该平面内来回摆动,C正确,A错误;绳b被烧断瞬间,绳a的拉力与重力的合力提供向心力,所以拉力大于小球的重力,绳a中的张力突然变大了,B正确.

2.下列关于匀速圆周运动的说法,正确的是(? )

A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度 B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度 C.做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速曲线运动 D.匀速圆周运动加速度的方向时刻都在改变,所以匀速圆周运动一定是变加速曲线运动 【答案】BD

【解析】速度和加速度都是矢量,做匀速圆周运动的物体,虽然速度大小不变,但方向时刻在改变,速度时刻发生变化,必然具有加速度.加速度大小虽然不变,但方向时刻在改变,所以匀速圆周运动是变加速曲线运动.故本题选B、D.

3.雨天野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a、b、c、d为后轮轮胎边缘上的四个特殊位置,则(? )

A.泥巴在图中a、c位置的向心加速度大于b、d位置的向心加速度 B.泥巴在图中的b、d位置时最容易被甩下来 C.泥巴在图中的c位置时最容易被甩下来 D.泥巴在图中的a位置时最容易被甩下来 【答案】C

【解析】当后轮匀速转动时,由a=Rω2知a、b、c、d四个位置的向心加速度大小相等,A错误.在角速度ω相同的情况下,泥巴在a点有Fa+mg=mω2R,在b、d两点有Fb=Fd=mω2R,在c点有Fc-mg=mω2R.所以泥巴与轮胎在c位置的相互作用力最大,最容易被甩下来,故B、D错误,C正确.

4.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员(? )

A.受到的拉力为 G B.受到的拉力为2G C.向心加速度为 g D.向心加速度为2g 【答案】B

【解析】对女运动员受力分析,由牛顿第二定律得,水平方向FTcos 30°=ma,竖直方向FTsin 30°-G=0,解得FT=2G,a= g,A、C、D错误,B正确.

5.如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是(? )

A.若拉力突然消失,小球将沿轨道Pa做离心运动 B.若拉力突然变小,小球将沿轨迹Pa做离心运动 C.若拉力突然变大,小球将沿轨迹Pb做离心运动 D.若拉力突然变小,小球将沿轨迹Pc运动 【答案】A

【解析】在水平面上,细绳的拉力提供m所需的向心力,当拉力消失,物体受力合为零,将沿切线方向做匀速直线运动,故A正确.当拉力减小时,将沿pb轨道做离心运动,故BD错误当拉力增大时,将沿pc轨道做近心运动,故C错误.故选:A.

6.(多选)如图(a)所示,小球的初速度为v0,沿光滑斜面上滑,能上滑的最大高度为h.在图(b)中,四个小球的初速度均为v0,在A中,小球沿一光滑轨道内侧向上运动,轨道半径大于h;在B中,小球沿一光滑轨道内侧向上运动,轨道半径小于h;在C中,小球沿一光滑轨道内侧向上运动,轨道直径等于h;在D中,小球固定在轻杆的下端,轻杆的长度为h的一半,小球随轻杆绕O点向上转动.则小球上升的高度能达到h的有 (? )

【答案】AD

【解析】A中,RA>h,小球在轨道内侧运动,当v=0时,上升高度h<ra,故不存在脱轨现象,a满足题意;d中轻杆连着小球在竖直平面内运动,在最高点时有v=0,此时小球恰好可到达最高点,d满足题意;而b、c都存在脱轨现象,脱轨后最高点速度不为零,因此上升高度h′<h,故应选a、d.< p="">

7.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是 (? )

A.小球受重力、绳的拉力和向心力作用 B.小球做圆周运动的半径为L C.θ越大,小球运动的速度越大 D.θ越大,小球运动的周期越大 【答案】C

【解析】小球只受重力和绳的拉力作用,合力大小为F=mgtan θ,半径为R=Lsin θ,A、B错误;小球做圆周运动的向心力是由重力和绳的拉力的合力提供的,则mgtan θ=m ,得到v=sin θ ,θ越大,小球运动的速度越大,C正确;周期T= =2π ,θ越大,小球运动的周期越小,D错误.

8.如图所示,足够长的斜面上有a、b、c、d、e五个点,ab=bc=cd=de,从a点水平抛出一个小球,初速度为v时,小球落在斜面上的b点,落在斜面上时的速度方向与斜面夹角为θ;不计空气阻力,初速度为2v时(? )

A.小球可能落在斜面上的c点与d点之间 B.小球一定落在斜面上的e点 C.小球落在斜面时的速度方向与斜面夹角大于θ D.小球落在斜面时的速度方向与斜面夹角也为θ 【答案】BD

【解析】设ab=bc=cd=de=L0,斜面倾角为α,初速度为v时,小球落在斜面上的b点,则有L0cos α=vt1,L0sin α= .初速度为2v时,则有Lcos α=2vt2,Lsin α= ,联立解得L=4L0,即小球一定落在斜面上的e点,选项B正确,A错误;由平抛运动规律可知,小球落在斜面时的速度方向与斜面夹角也为θ,选项C错误,D正确.

9.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定.若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需

(1)为保证小球能在竖直面内做完整的圆周运动,在A点至少应施加给小球多大的水平速度?

(2)在小球以速度v1=4 m/s水平抛出的瞬间,绳中的张力为多少?

(3)在小球以速度v2=1 m/s水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.

【答案】(1) ?m/s (2)3 N (3)无张力,0.6 s

【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg=m= ,解得v0= = m/s.

(2)因为v1>v0,故绳中有张力.根据牛顿第二定律有FT+mg=m ,代入数据得绳中张力FT=3 N.

(3)因为v2

10.在高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.

(1)如果汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?

(2)如果高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱形立交桥的半径至少是多少?(取g=10 m/s2)

【答案】(1)150 m (2)90 m

【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有Fmax=0.6mg=m ,由速度v=108 km/h=30 m/s得,弯道半径rmin=150 m.

(2)汽车过圆弧拱桥,可看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有mg-FN=m .为了保证安全通过,车与路面间的弹力FN必须大于等于零,有mg≥m ,则R≥90 m.

11.游乐园的小型“摩天轮”上对称地分布着8个吊篮,每个吊篮内站着一个质量为m的同学,如图所示,“摩天轮”在竖直平面内逆时针匀速转动,若某时刻转到顶点a上的甲同学让一小重物做自由落体运动,并立即通知下面的同学接住,结果重物开始下落时正处在c处的乙同学恰好在第一次到达最低点b处时接到重物,已知“摩天轮”半径为R,重力加速度为g,不计空气阻力.求:

(1)接住重物前,重物自由下落的时间t.

(2)人和吊篮随“摩天轮”运动的线速度大小v.

(3)乙同学在最低点处对吊篮的压力FN.

【答案】(1)2

(2)

(3)(1+ )mg;竖直向下

【解析】(1)由运动学公式:2R= gt2,t=2 .

2020高中物理圆周运动教案大全二

教学目标】

知识与技能

1、知道如果一个力或几个力的合力的效果是使物体产生向心加速,它就是圆周运动的物体所受的向心力。会在具体问题中分析向心力的来源。

2、理解匀速圆周运动的规律。

3、知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。

过程与 方法

1、通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生的分析和解决问题的能力.

2、通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.

情感、态度与价值观

对几个实例的分析,使学生明确具体问题必须具体分析,学会用合理、科学的方法处理问题。

★教学重点:在具体问题中能找到向心力,并结合牛顿运动定律求解有关问题。

★教学难点1、具体问题中向心力的来源。2、关于对临界问题的讨论和分析。

【学情分析】学生通过上节课的学习已经初步的掌握了解决圆周运动问题的一般方法,在此基础上,本节课在深入的探讨生活中的圆周运动,特别是临界问题的解决。

【教材分析】讨论教科书中的这几个实例时,要抓住这样的基本思想,即先分析物体所受的力,然后列出方程、解方程。

【教学手段和设施】探究式教学。一个透明的塑料瓶和一个过山车演示仪

【教学过程】

温故知新

1、做匀速圆周运动的物体的受力特点:合外力提供向心力。

2、向心力公式的复习:Fn=man=m =mr =mr( )2

3、汽车过桥问题的回顾:

竖直方向的合力提供圆周

运动需要的向心力

mg-FN=m mg-FN=m

.课堂引入:向学生展示过山车的图片和演示水流星的表演,并提出问题:为什么在最高点时过山车不下落?水不流下呢?要解开这一谜团,就一起来走进本节——《竖直面内的圆周运动》。

课堂自主导学

绳模型

绳拴小球在竖直面内做圆周运动

【演示】用一细绳拴住一重物在竖直面内做圆周运动

【问题探讨】

(1)分析小球在最低点的受力情况和运动情况的关系

(2)分析小球在最高点的情况

具体步骤:引导学生按步骤进行。

1、对小球受力分析。2、列式

3、根据公式分析当速度减小,什么随之发生变化,如何变?

【点拨】

1、当小球恰好通过最高点,应满足拉力___,此时小球通过最高点的速度是最小的,通常情况下叫临界速度V0。此时___提供向心力,有______,求得V0=___。

2、若在最高点小球速度小于V0,小球将在___重力的作用下下落。

(mg>m ,球做近心运动)

3、若在最高点小球速度大于V0,小球将在___的作用下做圆周运动。此时向心力由______共同提供。列式:______。

(二)小球在竖直光滑轨道面内侧做圆周运动。(过山车模型)

(学生分析讨论回答结果)

小球在最高点向心力来源?

列式:____________

在最低点向心力来源?

列式:____________

3.小球恰好通过最高点,应满足弹力__,列式_____得临界速度V0=__。

4. 若在最高点小球速度小于V0,小球将在___重力的作用下下落。

5. 若在最高点小球速度大于V0,小球将在___的作用下做圆周运动。此时向心力由______共同提供。列式即为______。

(三)水流星模型。(自主学习)

2020高中物理圆周运动教案大全三

一、教材分析

《匀速圆周运动》为高中物理必修2第五章第4节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。

人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析 总结 出规律,从而形成理性认识。

教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。

二、教学目标

1.知识与技能

①知道什么是圆周运动、什么是匀速圆周运动。理解线速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。

②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。

③理解匀速圆周运动是变速运动。

④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。

2.过程与方法

①运用极限思维理解线速度的瞬时性和矢量性.掌握运用圆周运动的特点去分析有关问题。

②体会有了线速度后,为什么还要引入角速度.运用数学知识推导角速度的单位。

3.情感、态度与价值观

①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。

②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。

③进行爱的 教育 。在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。

三、教学重点、难点

1.重点

①理解线速度、角速度、周期的概念及引入的过程;

②掌握它们之间的联系。

2.难点

①理解线速度、角速度的物理意义及概念引入的必要性;

②理解匀速圆周运动是变速运动。

四、学情分析

学生已有的知识:

1.瞬时速度的概念

2.初步的极限思想

3.思考、讨论的习惯

4.数学课中对角度大小的表示方法

五、 教学方法 与手段

演示实验、展示图片、观看视频、动画;

讨论、讲授、推理、概括

师生互动,生生互动,

六、教学设计

(一)导入新课(认识圆周运动)

●通过演示实验、展示图片、观看视频、动画,让学生认识圆周运动的特点,

演示小球在水平面内圆周运动

展示自行车、钟表、电风扇等图片

观看地球绕太阳运动的动画

观看花样滑冰视频

提出问题:它们的运动有什么共同点?答:它们的轨迹是一个圆.

师:对,这就是我们今天要研究的圆周运动

观看动画,思考问题:这两个球匀速圆周运动有什么不同?答:快慢不同

提出问题:如何描述物体做圆周运动的快慢?

学生动手,分组实践,观察自行车的传动装置,思考与讨论:

自行车的大齿轮,小齿轮,后轮中的质点都在做圆周运动。

比较哪些点运动得更快些? 说说 你比较的理由。

讨论后,展示自行车传动装置图片(或视频),进一步提问:如何比较物体圆周运动快慢?师生共同分析,小结可能的比较方法:

方案1:比较物体在一段时间内通过的圆弧长短

方案2:比较物体在一段时间内半径转过的角度大小

方案3:比较物体转过一圈所用时间的多少

方案4:比较物体在一段时间内转过的圈数

注意:在与学生交流时表达鼓励和赏识:如“非常好!”、“你(们)真棒!”、“说得对!”等。

(二)新课教学

描述圆周运动快慢的物理量

线速度

学生阅读课文有关内容,思考并讨论以下问题:

1.线速度是怎么定义的?单位是什么?

2.线速度的方向怎样?请说出圆周运动的速度方向是怎么确定的。

3.物体匀速圆周运动的线速度有什么特点?

4.为什么说匀速圆周运动是一种变速运动?这里的“匀速”是指什么不变?

生生互动,师生互动后,概括如下:点击幻灯片,全方位学习小结线速度的概念;并通过砂轮切割的视频,让学生感受圆周运动的速度方向。如下:

线速度:

定义:质点做圆周运动通过的弧长 Δl 和所用时间 Δt 的比值叫做线速度。

大小:v=Δl/Δt (分析:当Δt很小时,v即圆周各点的瞬时速度。)

单位:m/s 方向:沿圆周上该点的切线方向(看砂轮工作视频)。

物理意义:描述通过弧长的快慢。

匀速圆周运动:质点沿圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。

看动画,学习匀速圆周运动的概念:质点沿圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。(请学生再举几个生活中的圆周运动的实例)

关于匀速圆周运动的问题讨论:

1.匀速圆周运动的线速度是不变的吗?此处的“匀速”是指速度不变吗?

2.匀速圆周运动是匀速运动吗?

注意:在与学生交流时表达鼓励和赏识:如“很好!”“你(们)真了不起!”等。

讨论后,小结如下:

匀速圆周运动是变速运动!(线速度的方向时刻改变)

“匀速”指速率不变

匀速圆周运动是线速度大小不变的运动!

角速度

看图片,回答问题:(转向角速度学习)

观察自行车的传动装置,分析P点和N点,M点和N点哪点运动得更快些?哪点转动得更快些?请同学们讨论一下!

通过讨论,同学们发现,原来,质点运动得快与转动得快不是一回事!有必要引入一个表示转动快慢的物理量──角速度(转入角速度学习)

注意:在与学生交流时表达鼓励和赏识:如“分析得好!”“不错!”等。

下面我们研究描述匀速圆周运动转动快慢的物理量──角速度


2020高中物理圆周运动教案大全相关 文章 :

1. 高一物理《匀速圆周运动》教案与高中物理学习技巧

2. 高中物理曲线运动教案大全

3. 高中物理圆周运动知识点总结

4. 2020高中物理老师的工作计划

5. 高中物理必修2圆周运动公式

6. 高中物理匀速圆周运动公式总结

7. 高中物理匀速圆周运动公式

8. 2020年高中物理老师的个人工作计划

9. 2020年高一第二学期物理教学的工作计划

10. 2020物理教师工作计划

⑵ 急!数学在生活中的应用

数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。
下面,我就紧扣高中数学学习的实际,从函数、不等式、数列、立体几何和解析几何等五方面,简明扼要地谈一下数学知识在生产生活中的应用。
http://www.yrsx.com/Article_View.asp?id=20
第一部分 函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。这里重点讲前两类函数的应用。
一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
http://www.yrsx.com/Article_View.asp?ID=20&page=1
二、一元二次函数的应用
在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,
其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。

三、三角函数的应用
三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。
如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα×d这个问题至此便迎刃而解了。
http://www.yrsx.com/Article_View.asp?ID=20&page=2
第二部分 不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。
在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
实践活动 已知条件 最优方案 解决办法
设计花坛绿地 周长或斜边 面积最大 极值定理一
经营成本 各项费用单价及销售量 成本最低 函数、极值定理二
车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出
速度、各项费用及相应 最低成本,再由此
比例关系 计算出最低票价
(票价=最低票价+ +平均利润)
包装罐设计 (见表后) (见表后) (见表后)

包装罐设计问题
1、“白猫”洗衣粉桶
“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),
若容积一定且底面与侧面厚度一样,问高与底面半径是
什么关系时用料最省(即表面积最小)?
分析:容积一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为R,高为h,若体积为定值V,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d(计算过程请读者自己
写出,本文从略)∴应设计为h=2d的圆柱体.

事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了。
http://www.yrsx.com/Article_View.asp?ID=20&page=3
第三部分 数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
本文重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。

(二)有关数列的其他应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。读者朋友一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。下面请看北京市西城区2003年抽样测试-高二数学试卷中的一道应用问题。

http://www.yrsx.com/Article_View.asp?ID=20&page=4
http://www.yrsx.com/Article_View.asp?ID=20&page=5

⑶ 幼儿园大班科学活动教案《有趣的转动》含反思

作为一名老师,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么大家知道正规的教案是怎么写的吗?下面是我为大家收集的幼儿园大班科学活动教案《有趣的转动》含反思,欢迎阅读与收藏。

设计意图:

现实生活中的转动现象随处可见,像风车的转动,车轮的转动,陀螺的转动等,在我们成人看来是理应如此再正常不过的事情,却深深吸引着我们的孩子,转动的奥秘让孩子产生了浓厚的兴趣和探索欲望,为了顺应孩子的心理,我选择了这一科学活动来帮助幼儿去探索发现并体验转动的乐趣。

活动目标:

1、培养幼儿对“转动”这一科学现象的兴趣,体验转动物体的乐趣。

2、发展幼儿的观察力,动手操作能力及分析比较能力。

3、积极的参与活动,大胆的说出自己的想法。

4、培养幼儿乐观开朗的性格。

活动重难点:

重点:培养幼儿对“转动”这一科学现象的兴趣,体验转动物体的乐趣。

难点:引导幼儿初步了解转动的原理

活动准备:

物质:师幼一起搜集可以转动的物体,布置“转动乐园”;课件(生活中的转动物体给人们带来的方便;人们利用转动原理创造的新发明)发明奖若干;榨汁机一台;苹果块若干。

知识:幼儿对风车、陀螺等转动玩具很感兴趣

活动过程:

一、导入

引导:我知道小朋友们最爱玩游戏了,我们先玩“咪咪转”的游戏吧,你可以自己,也可以两个、三个人一起玩。

二、展开

(一)引导幼儿探索转动物体的方法

1、幼儿自由玩“转动乐园”的玩具,并想办法让它转动起来。

引导:刚才玩游戏的时候,我看到小朋友们的身体都转起来了,在我们的身边有许多的物体也能转动起来,接下来,我就带大家到“转动乐园”里玩一玩,看看你能不能把那里的物体转动起来,一会儿,我就要问问:“你是用什么方法让它转动起来的?”

2、表述自己转动物体的方法

引导:请小朋友们把转动玩具送回家,轻轻回到座位上。

问:谁来给大家说一说你玩的是什么?你是用什么方法让它转动起来的?请小朋友把话说完整。

引导:请你来给大家演示一下吧!

3、教师小结:小朋友真会动脑筋,想出了各种各样的办法让转动乐园里的.物体转动了起来。

(二)引导幼儿发现转动时的有趣现象

1。幼儿第二次操作、探索引导:请小朋友们再到转动乐园里玩一次,请你仔细观察,看看物体转动的时候会有什么有趣的现象发生?

2。分享发现

问:在转动物体的时候,你发现了什么有趣的现象?请你给大家表演一下吧!

3、小结:因为物体转动得非常快,所以上面的花纹、缝隙都看不出来了。

(三)引导幼儿感知转动的简单原理

1、探索

引导:物体转动起来的时候是什么样子?请你来学一学。

问:你能用笔画出来吗?先请幼儿在黑板上画圆,老师在黑板上补充,用箭头指示运动方向。

请个别用胳膊来演示的小朋友上台,引导幼儿发现:胳膊是围绕什么转动的?(肩膀)

演示伞的转动,问:伞是围绕什么转动的?

演示风车的转动,问:风车是围绕什么转动的?

小结:所有转动的物体都有一个很大的秘密,它们都是围绕一个中心进行运动(在黑板上画出“中心”),物体围绕一个中心进行运动,就是转动。

2、找物体转动的“中心”

问:谁来指指哪是伞转动的中心?哪是陀螺转动的中心?哪是风车转动的中心?

问:你刚才玩的是什么?它转动的中心在哪里?请你给大家指一指。

3、以游戏“遥控机器人”的形式,复习、巩固转动的原理

引导:现在,我们玩一个转动的游戏,请小朋友来当机器人,谁想当机器人?

机器人听好指挥:机器人,转转头,头转动的中心在哪里?机器人转胳膊,中心在哪里?……手腕转转转……身体转转转……

(四)利用课件,了解转动原理在生活中的应用

1、日常生活中的转动物体

引导:许多爱动脑筋的人,利用转动的道理,发明了许多有用的物品,我们一起来看一下。(看课件)

引导:在生活中,你还见过哪些转动的物品?它给我们的生活带来了什么好处?

2、了解新发明

引导:刚才小朋友看到的和大家说的这些物品,都是我们生活中常见的,最近我上网查资料的时候,发现了许多新发明,它们也都是利用了转动的道理,我们一起看看。

3、激发创造欲

引导:你长大了想发明一件什么转动的物品,它能给我们的生活带来什么方便?

为幼儿颁发“发明奖”。

三、延伸:享受转动原理带来的好处

出示榨汁机,引导:这是人们利用转动的道理发明的“榨汁机”,通上电,齿轮就会转动起来,将水果、蔬菜切碎,榨出汁来,我们班的小朋友开始换牙了,有的牙掉了,有的牙已经晃动了,吃起水果特别费劲,我们回到教室榨点果汁喝怎么样?

带幼儿离开场地。

活动反思:

新《纲要》强调:“科学教育应密切结合幼儿的实际生活进行,利用身边的事物与现象作为科学探索的对象。”因此,我以幼儿的科学教学为切入点,尝试了通过生活化的幼儿科学教育。在活动设计和组织实施中,我也遵循了纲要中的多种原则。在本活动中,我以谈话导入,调动了幼儿已有的经验,激发了幼儿活动的兴趣。通过提供多种幼儿身边熟悉的操作材料进行操作、观察、猜想、思考中体验、获取有关转动的知识经验。

热点内容
做最好的教师 发布:2025-01-08 18:13:28 浏览:457
南京教育装备 发布:2025-01-08 18:05:25 浏览:13
人教版一年级下数学 发布:2025-01-08 17:55:59 浏览:346
完美的教学读后感 发布:2025-01-08 16:39:20 浏览:678
湖南省教育考试院网站 发布:2025-01-08 15:05:02 浏览:436
碰撞英语 发布:2025-01-08 14:50:03 浏览:627
化学与调味品 发布:2025-01-08 13:47:51 浏览:510
剑网3五毒怎么样 发布:2025-01-08 13:16:55 浏览:765
一年级上册语文备课 发布:2025-01-08 13:09:02 浏览:921
创通教育 发布:2025-01-08 13:05:18 浏览:22