当前位置:首页 » 教学教育 » 奇偶性教学设计

奇偶性教学设计

发布时间: 2024-02-22 20:23:35

㈠ 高中数学教案设计

讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性。接下来是我为大家整理的高中数学教案设计,希望大家喜欢!

高中数学教案设计一

教学目标

1。使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想 方法 。

3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

教学建议

教材分析

(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

(2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

教学设计示例

课题

教学目标

1。 理解的定义,初步掌握的图象,性质及其简单应用。

2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

教学用具

投影仪

教学方法

启发讨论研究式

教学过程

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

1。6。(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞_,由1个_2个,2个_4个,……一个这样的细胞_次后,得到的细胞_个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为 。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

由学生回答: 。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

一。 的概念(板书)

1。定义:形如 的函数称为。(板书)

教师在给出定义之后再对定义作几点说明。

2。几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

(2)关于的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(1) , (2) , (3)

(4) , (5) 。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3。归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1。定义域 :

2。值域:

3。奇偶性 :既不是奇函数也不是偶函数

4。截距:在 轴上没有,在 轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1。图象的画法:性质指导下的列表描点法。

2。草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3。性质。

(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

(2) 时, 在定义域内为增函数, 时, 为减函数。

(3) 时, , 时, 。

总结 之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1。利用单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1。 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解: 在 上是增函数,且

< 。(板书)

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出 >1,<1,>。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0。

三。巩固练习

练习:比较下列各组数的大小(板书)

(1) 与 (2) 与 ;

(3) 与 ; (4) 与 。解答过程略

四。小结

1。的概念

2。的图象和性质

3。简单应用

五 。板书设计

高中数学教案设计二

《椭圆》

一、教材分析

(一)教材的地位和作用

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点

1.教学重点:椭圆的定义及其标准方程

2.教学难点:椭圆标准方程的推导

(三)三维目标

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

_

3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

二、教学方法和手段

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体, 思维训练 为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

高中数学教案设计三

课题:指数与指数幂的运算

课型:新授课

教学方法:讲授法与探究法

教学媒体选择:多媒体教学

指数与指数幂的运算——学习者分析:

1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.

2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.

指数与指数幂的运算——学习任务分析:

1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.

2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.

3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.

指数与指数幂的运算——教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.

2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.

3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.

教学流程图:

指数与指数幂的运算——教学过程设计:

一.新课引入:

(一)本章知识结构介绍

(二)问题引入

1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:

(1)当生物死亡了5730年后,它体内的碳14含量P的值为

(2)当生物死亡了5730×2年后,它体内的碳14含量P的值为

(3)当生物死亡了6000年后,它体内的碳14含量P的值为

(4)当生物死亡了10000年后,它体内的碳14含量P的值为

2.回顾整数指数幂的运算性质

整数指数幂的运算性质:

3.思考:这些运算性质对分数指数幂是否适用呢?

【师】这就是我们今天所要学习的内容《指数与指数幂的运算》

【板书】2.1.1指数与指数幂的运算

二.根式的概念:

【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..

【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.

【师】现在我们请同学来总结n次方根的概念..

1.根式的概念

【板书】概念

即如果一个数的n次方等于a(n>1,且n∈N_,那么这个数叫做a的n次方根.

【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.

【板书】表格

【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?

【学生】0的n次方根是0.

【师】现在我们来对这个符号作一说明.

例1.求下列各式的值

【注】本题较为简单,由学生口答即可,此处过程省略.

三.n次方根的性质

【注】对于1提问学生a的取值范围,让学生思考便能得出结论.

【注】对于2,少举几个例子让学生观察,并起来说他们的结论.

1.n次方根的性质

四.分数指数幂

【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.

思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗

【师】如果成立那么它的意义是什么,我们有这样的规定.

(一)分数指数幂的意义:

1.我们规定正数的正分数指数幂的意义是:

2.我们规定正数的负分数指数幂的意义是:

3.0的正分数指数幂等于0,0的负分数指数幂没有意义.

(二)指数幂运算性质的推广:

五.例题

例2.求值

【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.

六.课堂小结

1.根式的定义;

2.n次方根的性质;

3.分数指数幂.

七.课后作业

P59习题2.1A组1.2.4.

八.课后 反思

1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.

2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.

3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.

4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格.



高中数学教案设计相关 文章 :

★ 高中数学优秀教案设计

★ 高中数学集合教案设计

★ 高中数学三年如何教学设计

★ 高考数学集合教案大全

★ 高中数学如何教学设计

★ 高中数学课题导入方法

★ 高中数学教案怎么

★ 2020高中数学等比数列教案设计大全

★ 高中数学幂函数教案设计

★ 高中数学随机抽样教案设计

㈡ 高中数学教案教学设计

人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限的超越,才能够创造魅力永恒的价值。接下来是我为大家整理的高中数学教案教学设计,希望大家喜欢!

高中数学教案教学设计一

函数单调性与奇偶性

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本 方法 .

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生 总结 规律.

函数的奇偶性概念引入时,可设计一个课件,以

的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值

开始,逐渐让

在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式

时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如

)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高中数学教案教学设计二

高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,

集合(一)教学案例

。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄国圣彼得堡,父母亲是丹_,父亲出生於丹_都哥本哈根,是一个富裕的商人,他的母亲玛丽具有艺术家血统,他父母亲年轻时移居到俄国圣彼得堡,康托就出生在那里,康托是家中长子,并於1856年全家移居到德国法兰克福,也因为康托多次改变国籍,许多国家都认为康托的成就都是它们培养出来的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列 文章 ,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学_的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神_,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。

实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:

实数正实数负实数零

4、以下由学生完成:(1)、把下列各数填入相应的圈内

0、、2.5、、、-6、、8%、19

整数集合分数集合无理数集合

(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}

整数集合:{}

正实数集:{}

无理数集:{}

3.解不等式组(1)2x-3〈5

4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,

《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R_R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N

32(5)(-2)0N_6)Q

3232(7)Z(8)—R

五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《 高一数学 》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()

常用数集属于a∈AN、N_或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA

本节课设计的目的:通过创设情境激发学生的学习兴趣, 课前预习 培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。

高中数学教案教学设计三

集合的概念

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示

一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合记作N,

(2)正整数集:非负整数集内排除0的集记作N_N+

(3)整数集:全体整数的集合记作Z,

(4)有理数集:全体有理数的集合记作Q,

(5)实数集:全体实数的集合记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括

数0

(2)非负整数集内排除0的集记作N_N+Q、Z、R等 其它

数集内排除0的集,也是这样表示,例如,整数集内排除0

的集,表示成Z

_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,

或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数(不确定)

(2)好心的人(不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|,所组成的集合,最多含(A)

(A)2个元素(B)3个元素(C)4个元素(D)5个元素

5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

(1)当x∈N时,x∈G;

(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

则x=x+0_a+b∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整数,

∴=不一定属于集合G

四、小结:本节课学习了以下内容:

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

五、课后作业:

六、板书设计(略)

七、课后记:



㈢ 小学五年级上册数学《数的奇偶性》教案

教学内容:

课本第12~17页上的内容。

教学目标:

1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。

2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。

3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。

4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。

教学重点:

从生活中的摆渡问题,发现数的奇偶性规律。

教学难点:

运用数的奇偶性规律解决生活中的实际问题。

教具准备:

投影、杯子。

教学过程:

一、揭示课题

自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。

二、组织活动,探索新知

活动一:示图(右图)

小船最在南岸,从南岸驶向北岸,

再从北岸驶回南岸,不断往返。

1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?

(2)有人说摆渡100次后,小船在北岸。

他的说法对吗?为什么?

2、请任说一个摆渡的次数,学生回答在销孝南岸还是北岸?

3、请学生画示意图和列表并观察。

4、想:摆渡的次数与船所在的位置有什么关系?

摆渡奇数次后,船在 岸。

摆渡偶数次后,船在 岸。

试一试

一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。

1、想一想:翻动的次数与杯口的朝向有什么关系?

翻动奇数次后,杯口朝 。

翻动偶数次后,杯口朝 。

2、把“杯子”换成“硬币”你能提出类似的问题吗?

活动二

圆中的数有什么特点?正方形中的数有什么特点?

圆中的数都是偶数,正方形中的数租扮都是奇数

试一试:(投影)

三、巩固练习(投影出示习题)

四、总结

这节课同学们有什么收获和体会?

五、作业

亏型稿1、课本第17页“试一试”的题目。

2、优化作业

热点内容
教师发展三年规划 发布:2024-12-28 17:06:15 浏览:396
师风师德考试 发布:2024-12-28 16:35:33 浏览:747
数学周期题 发布:2024-12-28 15:28:09 浏览:145
校园中雪松 发布:2024-12-28 14:53:39 浏览:566
泰安小学教师 发布:2024-12-28 14:47:12 浏览:926
多久流产最好 发布:2024-12-28 14:26:31 浏览:635
一年级数学上册备课 发布:2024-12-28 14:17:24 浏览:399
九下历史时间 发布:2024-12-28 13:53:23 浏览:526
教师师德自查总结 发布:2024-12-28 13:02:45 浏览:518
化学平衡常数与什么有关 发布:2024-12-28 12:50:49 浏览:442