当前位置:首页 » 教学教育 » 分数除以分数教学设计

分数除以分数教学设计

发布时间: 2024-10-28 10:21:22

⑴ 一个数除以分数教学设计及设计意图

一个数除以分数的教学设计及设计意图的方法如下:

1、教材分析:

分析当前教学内容在教材体系中的地位和作用,以及与前后知识点的联系,帮助学生理解该知识点的重要性和应用场景。

2、教学目标:

明确本节课的教学目标,包括知识目标、能力目标和情感目标。通过本节课的学习,学生能够掌握一个数除以分数的计算方法和应用,提高数学运算能力和解决问题的能力。

3、教学重难点:

根据教学内容和学生实际情况,分析本节课的教学重点和难点,并制定相应的教学策略,帮助学生突破难点,掌握重点。

4、教学反馈的及时性:在每个教学环节后,都需要及时给予学生学习反馈,帮助他们了解自己的学习进度和效果。

5、教具和多媒体资源的合理利用:尽管多媒体和教具可以提高教学效果,但过度依赖或不当使用可能会分散学生的注意力。因此,选择和使用这些资源时需要适度并确保它们真正辅助教学。

⑵ 小学六年级分数除法教学设计

篇一:20xx新人教版小学六年级数学第三单元分数除法教案

第三单元 分数的除法

教学内容:

1、倒数的认识

2、分数除法

3、解决问题

教材分析:

本单元是在学生已经掌握了分数乘法的基础上,学习倒数的认识;分数除法和分数除法知识解决实际问题。主要内容包括:分数除法的意义与计算;解决问题。 三维目标:

知识和技能:

1、使学生理解倒数的意义,会求一个数的倒数。

2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。

3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。

过程与方法:

动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

情感、态度和价值观:

使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。 教法和学法:

练习法、自主探索,合作探索

教学重点、难点:

一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

一个数除以分数的计算法则的推导。分数除法应用题的数量关系理解。工作总量用单位“1”表示及工作效率所表示的含义。

篇二:20xx年最新人教版六年级上册分数除法教案

第三单元分数除法

单元教学内容:课本28页——47页,倒数的认识和分数除法的意义与计算以及解决相关的实际问题。

单元教学目标:

知识与技能:

1.使学生理解倒数的的意义,掌握求一个数的倒数的方法。

2.使学生体会分数除法的意义,理解并掌握分数除法的计算方法,会进行分数除法的计算。

3.使学生会解决一些和分数除法相关的实际问题。

过程与方法:经历观察、推理等过程,发展合情推理和总结概括的能力。掌握分数除法的计算方法,能综合运用所学的分数除法知识解决实际生活中的问题。

情感态度与价值观:使学生体会数学与生活的密切联系,体会并掌握模型、方程、数形结合等数学思想。

单元教材分析: 本单元是在学生已经掌握了分数乘法计算方法的基础上学习分数除法。通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则运算,掌握了解决相关实际问题的方法;另一方面也进一步加深了对乘除法关系的理解,体会数学知识方法的内在联系,为解决有关分数的实际问题提供更多的支持;同时也为后面学习比和比例、百分数打下坚实的基础。单元教学重点:分数除法的意义和计算方法及用除法解决实际问题。 单元教学难点:分数除法计算方法的探索与理解。

单元教学措施: 1.充分利用教材,促进学习迁移。本单元教材在揭示相关知识的内在联系,提供类比思维材料方面做了不少努力。教学时,应充分利用这些资源,激活学生已有的知识经验,引导他们进行类比,促进学习的正向迁移。 2.加强直观教学,结合实际操作和图形语言,探索、理解计算方法。 3.提供丰富的问题情境,培养学生学习能力。

第一课时倒数的认识

教学内容:倒数的认识(教材第28、第29页的内容)

教学目标:

知识与技能:引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

过程与方法:通过探究发现活动,使学生理解倒数的意义,掌握求倒数的方法。

情感态度与价值观:通过自行设计方案,培养学生自主探索和创新的意识。

教学重难点:

重点:理解倒数的含义,掌握求倒数的方法。

难点:用倒数的意义求小数的倒数。。

教学准备:课件

教学过程:

一、课前预习

二、创设情境

1、师:我们再来玩一种文字游戏,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢? 生:还可以说“朱倩倩是秦少坤同学的同桌。” 师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢? 生:开始有些迟疑,然后回答到“可以”。 板书“互为” 。同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。。

2、揭示课题。今天,我们就来研究这样的数——倒数。

三、自主探究

1、出示下列习题。

×=2 ×= 5×=×12=

(1) 指名学生回答。

(2) 学生观察这些算式有什么特点?

(3) 小组内进行交流。

(4) 各组汇报交流的情况。

(5) 师总结归纳: ① 这些算式的乘积都是1. ② 这些算式中分子和分母都打颠倒了。

板书:像这样乘积是1的两个数互为倒数。

学生齐读倒数的概念,理解倒数具备的条件。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

四、合作交流

1、找一个数的倒数的'方法:

我们刚才认识了倒数的概念,如何去找一个数的倒数呢?

出示例1。下面哪两个数互为倒数?

怎样找一个数的倒数呢?

×=

=

×= 所以,的倒数是,的倒数是

(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

五、拓展应用

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

(2)完成教材第29页练习六的第1-5题。

六、总结评价

3

第二课时 分数除法的意义

教学内容:分数除法的意义和分数除以整数(教材第30页的内容) 教学目标:

知识与技能:1.使学生经历探索分数除以整数方法的过程,理解并掌握分数除以整数的计算方法。2.能正确计算分数除以整数的试题。 过程与方法:动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

情感态度与价值观:培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。 教学难点:掌握分数除以整数的计算方法。

教学准备:课件、一张长方形的纸

教学过程:

一、课前预习

二、创设情境

三、自主探究

1、出示例1。

2、改编条件和问题,用除法计算。

3、初步理解分数除法的意义。 师问:如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

学生试着列出算式。

引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

4、归纳概括分数除法的意义。

4 58

四、合作交流

1、分数除以整数。

(1)出示例1.引导学生分析并用图表示数量关系。

师问:求每份是这张纸的几分之几,怎样列式?

(2)列式计算。

师问:÷2的结果是多少?这个结果是怎样得到的? 小组内学生折一折,算一算。

(3)理清思路。 思路一:把平均分成2份,就是把4个平均分成2份,每份是2个,也就是。 思路二:把平均分成2份,求每份是多少,就是求的是多少。

(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

五、拓展应用

1、巩固练习。完成教材第30页“做一做”。

2、填空。

(1)分数除法的意义与整数除法的意义( ),都是已知( )与( ),求()的运算。

(2)分数除以整数(0除外),等于分数( )这个整数的( )。

(3)÷5=×()=( )

3、计算并验算。 651115÷3= ÷10= ÷11= ÷30= 1128131289894545121525451545

六、总结评价

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

5

篇三:人教版六年级上册数学教案分数除法

[单元教材分析]:本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。教材内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

[单元教学目标]:1、使学生具体情景,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算。2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题。3、理解比的意义和比的基本性质,知道比与分数、除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题。

4、让学生在具体生动的情景中感受学习数学的价值。

[单元教学重点]:1、分数除法的计算;2、分数除法问题的解答;3、比的意义和基本性质的理解与运用。

[单元教学难点]:理解分数除法计算法则的算理;比的应用.

第一课时

教学内容:分数除以整数(例1、例2)

教学目标:

1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。

教学重点:1、分数除法意义的理解;2、分数除以整数的算法的探究。

教学难点:分数除以整数的算法的探究。

教学准备:例1的教学挂图;平均分成5份的长方形纸一张。

教学过程:

一、创设情景导入:

1、同学们,你们去过超市购物吗?(去过)你去买了一些什么东西呢?你有没有过相同的东西买几件的时候?能不能举个例?(指名让学生举例并用算式表示求该例的总价)

二、新知探究:

(一)分数除法的意义

1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。

2、上面的问题能改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

3、100g=?kg,你能将上面的问题改成用kg作单位的吗?(引导学生将整数乘除法应用题改变成分数乘除法应用题)

4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的

联系以及分数除法的意义。

5、练习:(巩固加深对意义的理解)课本28页做一做。学生独立练习,订正时让学生说明为什么这样填。

(二)、分数除以整数

1、小组学习活动:

活动⑴把这张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

活动⑵把这张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

[活动要求]先独立动手操作,再在组内交流:通过折纸操作和计算,你发现了什么规律?你有什么问题要提出来?

2、汇报学习结果:

活动1学生甲,把4/5平均分成2份,就是把4个1/5平均分成2份,1份就是2个1/5,就是2/5;用算式表示是:4/5÷2=(4÷2)/5=2/5

学生乙,把4/5平均分成2份,每份就是4/5的1/2,就是4/5×1/2;用算式表示是:4/5×1/2=4/10=2/5;

学生丙,我发现了计算4/5÷2时,可以用分子4÷2作分子,分母不变;

学生丁,我发现分数除以整数可能转化成乘法来计算,也就是乘以这个整数的倒数;

活动2:学生甲,4要平均分成3份,不能直接分,我先找出4和3的最小公倍数12,把4分成12份,再把12份平均分成3份,算式可以用4/5÷3表示,4不能够被3整除,这道题我不知道怎样计算;

学生乙,我的分法与前面的同学相同,不同的是:我在计算4/5÷3时,我把4/5÷3转化成4/5×1/3来计算,因为,把4/5平均分成3份,就是求4/5的1/3是多少。

讨论:

1、从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?

2、整数可以为0吗?

小结并板书:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。

三、巩固与提高

3、把3/5平均分成4份,每份是多少;什么数乘6等于3/20?

4、如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗?

四、作业练习

板书设计:

分数除法——分数除以整数

例1每盒水果糖重100g,3盒重多少g?例2把一张纸的4/5平均分成2份,每份是这张纸100×3=300g→1/10×3=3/10g 的几分之几?

3盒水果糖重300g,每盒子重多少g?4/5÷2=(4÷2)/5=2/5 4/5÷2=4/5×1/2=2/5 300÷3=100g→3/10÷3=1/10g如果把这张纸的4/5平均分成3份,每份是 300g水果糖,100g装1盒,可以装几盒? 这张纸的几分之几?

300÷100=3(盒)→3/10÷1/10=3(盒) 4/5÷3=4/5×1/3=4/15

除以一个不等于0的整数,等于分数乘以这个整数的倒数。

第二课时

教学内容:一个数除以分数(例3)

教学目标:

1、通过画线段图引导学生分析并归纳一个数除以分数的计算法则。

2、能运用法则,正确迅速地计算分数除法。

3、培养学生抽象思维能力。

4、让学生通过探索知识,从而获得知识,体验成功的乐趣,树立学习的自信心。 教学重点:

分析并归纳一个数除以分数的计算法则。

教学难点:

理解一个数除以分数的算理。

教学过程:

一、复习导入

1、计算:5/6÷103/5÷315/16÷2040/39÷26

(说一说,你在计算中如何尽量避免错误的产生?在计算中要注意什么?)

2、胜利路长1000米,东东走完全程用了20分钟,东东平均每分钟行多少米?

(独立解答并且说明解题依据)

3、2/3小时有()个1/3小时,1小时有()个1/3小时。

二、新知探究:

1、教学例3:小明2/3小时走了2km,小红5/12小时走了5/6 km,谁走得快些? 师:已知什么?

生:已知小明和小红各自的时间和对应的路程。

师:问题求什么?

生:求谁走的快些。

师:求谁走得快些?就是比较什么?

生:就是比较谁的速度快。

师:你能根据题意列出算式吗?

生:2÷2/3 5/6÷5/12

2、除数是分数的除法计算方法的探究:

引导学生画线段图分析

:

师:2/3里有几个1/3?2/3小时走了2 km,能不能求出1/3小时走多少千米?

生:2/3里有2个1/3,求1/3小时走了多少千米可以用2 km÷2,也就是2km×1/2; 师:2 km÷2得到的1km,有什么具体的含义?是线段图上的哪一段?

生:略

师:1小时里有几个1/3小时,能求1小时行多少千米了吗?

生:2×1/2×3=2×3/2=3 km。

指导学生观察:2÷2/3=2×1/2×3=2×3/2=3(提示:观察2÷2/3=2×3/2这一步) 师:这儿把除法转化成什么运算来计算?除以2/3=?

生:把除法转化为法来计算,除以2/3等于以3/2。

师:你能用自己的语言叙述整数除以分数的计算方法吗?

(有语言叙述、用字母表示等都行,只要是正确的都肯定学生的结论)

师:请你观察上面和算式,怎样把除法转化成为乘法来进行计算?你能说出转化的要点吗? 生:1、被除数没有变化;2、除号变乘号;3、除数变成了它的倒数。

3、学生独立计算5/6÷5/12 订正并板书

:

4、让学生根据分数除法的意义检验后作答。

三、巩固与提高:

1、31页做一做第1题和第2题的后两个小题。

(做完1题后,让学生把每个算式完整地读一遍,然后再完成第2题,第二题要求学生要写出计算过程。)

2、练习八第2题的后4个小题。

(在学生完成此题时,教师指导好思维慢的学生先算出乘法算式的积,再找出两题之间的关系)

四、全课小结:

1今天我们共同研究了什么知识?

2你能用一句完整的话来说一说今天的主要内容吗?

3你认为在完成课后作业时,应该从哪些方面尽量避免错误的产生?

五、作业练习:练习八第3、4题。(第3题在学生做完题后,引导学生将题中的4/5改成小数,用小数除法加以验证。)

六:教学反思:

第三课时

练习内容:分数除法的计算

练习目标:

1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

2运用所学的分数除法的知识,解决相应的实际问题.

练习过程:

一、基础知识练习:

1、计算:

⑴2/13÷2 8/9÷43/10÷3 5/11÷522/23÷2

⑵3/10÷223/24÷26 17/21÷518/9÷713/15÷4

(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

引导学生小结:除以一个不等于0的数,等于H这个数的倒数.

二 深入练习

1、计算下面各题,比较它们的计算方法.

5/6+2/35/6-2/35/6×2/35/6÷2/3

2、

(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。) 根据学生的回答,教师作如下板书:

一个数除以小于1的数,商大于被除数;

一个数除以1,商等于被除数;

一个数除以大于1的数,商小于被除数。

三、解决问题:

练习八第7至8题。

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

1、33页第5、9题。

2、 一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

五、教学反思:

第四课时

教学内容:例4,练习九第1---4题。

教学目标:

1、正确解答两三步计算的分数四则混合式题。

2、运用学过的知识,解答两步计算的较简单的分数应用题。

3、培养和训练学生的思考和分析解答问题的能力。

教学重点:

1、两三步式题的正确计算。

2、培养和训练学生运用所学知识解决问题的能力。

教学过程:

一:复习铺垫

⑶ 《分数的基本性质》教学设计

《分数的基本性质》教学设计 篇1

教学目的

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。

学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点

掌握分数的基本性质。

教学难点

抽象概括分数的基本性质。

教具学具准备:

多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

《分数的基本性质》教学设计 篇2

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学设计过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0。24=

0.288÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

六、板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

《分数的基本性质》教学设计 篇3

一、教学目标

1.经历探索分数基本性质的过程,理解分数的基本性质。

2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

二、 教学重、难点

教学重点是:分数的基本性质。

教学难点是:对分数的基本性质的理解。

三、教学方法

采用了动手做一做、观察、比较、归纳和直观演示的方法

四、教学过程

(一)、故事引入,揭示课题

1.教师讲故事。

猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

2.组织讨论。

(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。

(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=2040。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

分数的分子和分母变化了,

分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

( 二)、比较归纳,揭示规律

1.出示思考题。

比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的'。

2.集体讨论,归纳性质。

(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

板书:

(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。

(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以

相同的数)

(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。

(板书:都除以)

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

(板书:零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

3.出示例2:把12和1024化成分母是12而大小不变的分数。

思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

( 三)、沟通说明,揭示联系

通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

如:34=3÷4=(3×3)÷(4×3)=9÷12=912

( 四)、多层练习,巩固深化

1.口答。(学生口答后,要求说出是怎样想的?)

2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

教学反思:

学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

1、学生在故事情境中大胆猜想。

通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

2、学生在自主探索中科学验证。

在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

3、让学生在分层练习中巩固深化。

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

⑷ 《分数除法一》教学设计

篇一:北师大版小学五年级下册数学《分数除法(一)》教学设计

教材分析:

教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数 的分子是能被除数整除的,而第(2)题的算式是

4平均7

4 ÷2,被7

4 ÷3,被除数 的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

学情分析:

这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。

教学方法:

学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

教学内容:

教科书第55-56页 ,涂一涂、算一算及想一想、填一填和课后试一试

教学目的:

1、在涂一涂、算一算等活动中,探索理解分数除法的意义。 2、探索并掌握分数除以整数的计算方法,并能正确计算。 3、 能够运用分数除以整数的方法解决简单的实际问题。 4、 培养学生的动手能力和发散思维能力。

教具准备:

长方形纸 不同颜色彩笔几支 幻灯片

课时安排 : 2课时

第一课时

教学过程:

一、复习旧知

1、 什么是倒数?(乘积为1的两个数互为倒数)

2、 你能举出几个例子吗?

3、 如何求一个数的倒数?(求一个数的倒数时,用1去除以这个数.如果求一个整数的倒数,直接写成这个整数分之一即可;如果求一个分数的倒数,就是把这个分数的分子和分母互换;如果求一个小数的倒数,要将这个小数先化成分数再求;如果求一个带分数的倒数,应先将其化成假分数再求倒数.)

二、算一算

笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?(2×2=4袋)

问题2:这些白糖一共重2千克,每袋白糖有多重?(2÷4=千克)

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?(15=?千克)

三、探究新知

师:我们怎么解决问题3的困难呢?这就是我们今天学习的内容——除数是整数的分数除法。

1、出示情境图问题:把一张纸的 平均分成2份,每份是这张纸的几分之几?

师:观察屏幕上的图,想一想:是把哪一部分平均分成2份?每份是多少?在准备的长方形纸条上用自己喜欢的方法折一折,涂一涂。

学生活动,师巡视。

组织交流:通过画图,你发现了什么?

生:里面有四个,平均分成两份,是两个,就是

师: 能用一个算式表示出涂色的过程吗?(板书算式) 师:想一想,如果不看图,你会计算 ÷2 嘛?

你能说说你的大胆猜想嘛?(分母不变。被除数的分子除以整数得到商的分子)

2、师:大胆的猜想是一种非常好的数学思考方法,但还要经过科学的验证。我们来看看大家的猜想能不能也解决这一题呢?

课件出示:把一张纸的 平均分成3份,每份是这张纸的几分之几?(板书算式)

师:看来我们要换一种思维方式探索一种能普遍运用的方法。把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们动手在纸上分一分,涂一涂,涂好后和同桌交流一下怎样分。

学生活动,师巡视

组织交流:通过画图,你发现了什么? 生1:平均分成3份,每份就是这张纸的

生2:把3份,这其中的一份实际上就是的几分之几?

师:我们之前说,求一个数的几分之几可以用乘法! 对照这两道算式,你有什么想法吗?

师:把平均分成3份,就相当于求的,结果都是

中间我们可以用等号连起来。

你们看,原来的除法算式就转化成什么算式?什么变了?什么没变?这样有什么用?

生:被除数没变,除号改成了乘号(板书),除数3改成了3的倒数 。

(设计意图:学生运用画图或者分数的意义来解决问题,体会画图策略,锻炼学生解决问题的能力。)

提问:同样的'平均分成5份,每份实际上是的几分之几?6份,每份实际上是的几分之几?(板书算式)

师:同学们真棒!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要方法。

师:现在大家会计算刚才我们上课一开始的这道题了吗?我们一起算一算。

四、巩固练习

师:下面,我们就运用我们掌握的计算方法来完成教材上第56页的“练一练”2 学生独立完成,全班交流。说一说你这节课的收获。

(设计意图:让学生计算后,观察得出结论,并进行归纳,发现规律,注意了知识胡迁移) 小结:这就是分数除以整数的常用方法,谁来说一说这种算法是怎样的?那么0能不能做除数呢?所以,这里还要不上一个条件(0除外)

五、作业设计

课件出示练一练

(设计意图:让学生学会灵活运用计算规律:做分数乘法时,可以先约分再计算或者先计算再约分。)

六、板书设计

分数除法(一)

447÷2= 77÷3=21 II

44747× 7321÷5=× ÷6=7×621

篇二:北师大版五年下学期数学分数除法(一)教学设计及反思

学情分析:

五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

教学内容分析:

《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把 4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。 教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:

1、探索分数除以整数的计算方法。

2、能够运用分数除以整数的方法解决简单的实际问题。

教学方法: 导学教学法

创新理念:

“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。 教具准备:

长方形纸、课件。

教学流程:

一、 创设情境 提出问题

(1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?

(2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】

二、 自主探究 小组交流

(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

自主学习提示

1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

2. 同桌之间说一说彼此的想法。

3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

三 交流释疑

1、 初步感知分数除法

把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?

请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢?

还有不同的涂法吗?

能根据这个过程列出一个除法算式吗?

这个除法算式和以前学的除法有什么不同?

这就是这节课我们要学习的分数除法。(板书)

【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

2、 初探算法

把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

请大家在图(二)的上面涂一涂。

交流:(展示学生不同的涂法)

同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。

怎样才能算出得数呢?

(师提问:计算时为什么要用 × 1/3?)

观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

(教师出示三组算式)

1/3÷5 4/5÷31/3÷5

指生口算。

让学生观察每一组算式,说一说发现了什么?

根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

(学生口述算法后)

【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

四、实践应用

1、算一算

9/10÷3015/16÷2014/15÷21 8/9÷6 5/6÷15

2、填一填

师:学会了知识就要灵活的运用,这道题你们能填上吗?

学生独立在书上第26页填一填,想一想。

集体订正。

3、解决问题。

师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?

学生在练习本上列式解答。

指生汇报完成情况。

运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

(指生口头编题,其他学生解决)

【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

五、课堂总结

学生谈一谈本节课的收获。

同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

六、布置作业:

22页练一练

七.板书设计:

分数除法(一)

——分数除以整数

分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

(1)4/7÷2 (2) 4/7÷3

=4 /7×1/2

=2/7

教学反思:

《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

一、充分利用学生最佳的学习状态

课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

二、让学生在不同的活动中探索数学。

数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生(探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

三、让学生在不同层次的练习中应用数学。

学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

篇三:北师大版数学五年级下册 分数除法(一)教学设计

一、教学内容

本课是北师大版数学五年级下册第55页到56页内容。

二、教材分析

这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是 ÷2,被除数的分子是能被除数整除的,而第(2)题的算式是 ÷3,被除数的分子是不能被3整除的。无论哪一种方法,目的都是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

三、教学目标

根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:

知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

过程与方法目标:通过实践活动和自主探究,培养学 生动手能力及发现问题、解决问题的能力。

情感、态度与价值观目标:通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

四、教学重点、难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。 教学难点:分数除以整数计算法则的推导过程。

五、教学准备

多媒体课件、长方形纸等。

六、教学过程

(一) 旧知复习蕴伏铺垫

同学们,我们在学习新知识之前,先来考考你以前学过的知识。请看大屏幕:(课件出现)

1.说一说它们的倒数是多少?你能举一组倒数的例子吗?

2.口算

3.把一个物体平均分成2份,每份占这个物体的几分之几?把一个物体平均分成3份,每份占这个物体的几分之几?把一个物体平均分成4份,每份占这个物体的几分之几?

把一个物体换成单位“1”,把单位“1”平均分成5份,每份占单位“1”的几分之几?

(二) 创设情境理解意义

好,同学们对以往学过的知识掌握的非常棒,接下来,请看今天的学习内容。(课件出示)

把一张纸的平均分成2份,每份是这张纸的几分之几?

1.找同学读题(指名读题)

2.我们怎么来解决这个问题?请同学们利用手中的第一个长方形分一分、涂一涂。(涂完的同学和你的同桌说一说你是怎么涂的) 47

3.汇报。好,找两位同学说一说你是怎么涂的。(找两位同学)其他同学也是这么涂的吗?好,通过操作,我们知道 里有4个 ,平均分成2份,每份就是2个 ,是 。那么大屏幕上的这道题结果是 ÷2=

(三) 大胆猜想举例验证 通过操作,明白是怎样得到的。那么到底怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?(课件出示四道习题)

小结:刚才的猜想我们发现部分习题可以,还有一些习题不适用。

(四) 激发矛盾再次探究

1.如 ÷3,因为分子4除以3是除不尽的。说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。那么我们来研究一下,像÷3这类分子除不尽的情况,怎么办?

2.请大家利用第二个长方形动手分一分、涂一涂,然后再进行小组交流。

3.小组交流(课件出示小组合作提示)

4.汇报:

根据学生的小组讨论,学生发现把 平均分成3份,每一份就是这

444。得到的算式是 ÷3= 。此时我还引导学生发现:21721

441把 平均分成3份,这其中的一份实际上就是 的 ,而求一773

414个数的几分之几可以用乘法来计算,算式是 × =。比较732147471727471747272747张纸的

两个算式,学生很快发现它们是相等的。由此,学生再一次得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

(五)再次验证分层练习

在 里填上得数,在 里填上“>”、“<”或“=”。(三组练习)

(六)结论

除以一个整数(零除外)等于乘这个整数的倒数。

(七)巩固练习

热点内容
幼儿园班主任学期工作总结 发布:2025-01-23 04:41:37 浏览:342
马云是什么老师 发布:2025-01-23 04:05:27 浏览:116
创客教学模式 发布:2025-01-23 03:53:26 浏览:457
杨小敏老师 发布:2025-01-23 03:48:13 浏览:852
小孩子学英语 发布:2025-01-23 03:21:06 浏览:452
电能电功教学设计 发布:2025-01-23 03:20:24 浏览:969
博白县教育科研网 发布:2025-01-23 01:35:39 浏览:438
玄武区教育 发布:2025-01-23 00:14:34 浏览:262
为什么电脑自动重启 发布:2025-01-23 00:06:01 浏览:284
胡姓班主任 发布:2025-01-22 23:37:52 浏览:182